

This course prepares you to do the following:

• Use LabVIEW to create applications.

• Understand front panels, block diagrams, and icons and connector panes.

• Use built-in LabVIEW functions.

• Create and save programs in LabVIEW so you can use them as subroutines.

• Create applications that use plug-in DAQ devices.

This course does not describe any of the following:

• Programming theory

• Every built-in LabVIEW function or object

• Analog-to-digital (A/D) theory

NI does provide free reference materials on the above topics on ni.com.

The LabVIEW Help is also very useful:

LabVIEW»Help»Search the LabVIEW Help…

Virtual Instrumentation

For more than 30 years, National Instruments has revolutionized the way engineers and

scientists in industry, government, and academia approach measurement and

automation. Leveraging PCs and commercial technologies, virtual instrumentation

increases productivity and lowers costs for test, control, and design applications

through easy-to-integrate software, such as NI LabVIEW, and modular measurement

and control hardware for PXI, PCI, USB, and Ethernet.

With virtual instrumentation, engineers use graphical programming software to create

user-defined solutions that meet their specific needs, which is a great alternative to

proprietary, fixed-functionality traditional instruments. Additionally, virtual

instrumentation capitalizes on the ever-increasing performance of personal computers.

For example, in test, measurement, and control, engineers have used virtual

instrumentation to downsize automated test equipment (ATE) while experiencing up to

a 10 times increase in productivity gains at a fraction of the cost of traditional

instrument solutions.

National Instruments LabVIEW is an industry-leading software tool for designing test,

measurement, and control systems. Since its introduction in 1986, engineers and

scientists worldwide who have relied on NI LabVIEW graphical development for

projects throughout the product design cycle have gained improved quality, shorter time

to market, and greater engineering and manufacturing efficiency. By using the

integrated LabVIEW environment to interface with real-world signals, analyze data for

meaningful information, and share results, you can boost productivity throughout your

organization. Because LabVIEW has the flexibility of a programming language

combined with built-in tools designed specifically for test, measurement, and control,

you can create applications that range from simple temperature monitoring to

sophisticated simulation and control systems. No matter what your project is, LabVIEW

has the necessary tools to make you successful quickly.

Virtual Instrumentation Applications

Virtual instrumentation is effective in many different types of applications, from design to

prototyping to deployment. The LabVIEW platform provides specific tools and models to meet

specific application challenges, ranging from designing signal processing algorithms to making

voltage measurements, and can target any number of platforms from the desktop to embedded

devices – with an intuitive, powerful graphical paradigm.

LabVIEW scales from design and development on PCs to several embedded targets, from

rugged toaster-size prototypes to embedded systems on chips. LabVIEW streamlines system

design with a single graphical development platform. In doing so, it encompasses better

management of distributed, networked systems because as the targets for LabVIEW grow varied

and embedded, you need to be able to more easily distribute and communicate between the

various LabVIEW code pieces in your system.

Integrated Hardware Platforms

A virtual instrument consists of an industry-standard computer or workstation equipped

with powerful application software, cost-effective hardware such as plug-in boards, and

driver software, which together perform the functions of traditional instruments.

Virtual instruments represent a fundamental shift from traditional hardware-centered

instrumentation systems to software-centered systems that exploit the computing power,

productivity, display, and connectivity capabilities of popular desktop computers and

workstations.

Although the PC and integrated circuit technology have experienced significant

advances in the last two decades, software truly offers the flexibility to build on this

powerful hardware foundation to create virtual instruments, providing better ways to

innovate and significantly reduce cost. With virtual instruments, engineers and scientists

build measurement and automation systems that suit their needs exactly (user-defined)

instead of being limited by traditional fixed-function instruments (vendor-defined).

This LabVIEW course is designed for audiences with or without access to National

Instruments hardware.

Each exercise is divided into three tracks, A, B, and C

Track A is designed to be used with hardware supported by the NI-DAQmx driver. This

includes most USB, PCI, and PXI data acquisition devices with analog input. Some

signal conditioning and excitation (external power) is required to use a microphone with

a DAQ device.

Track B is designed to be used with no hardware. You can simulate the hardware with

NI-DAQmx Version 8.0 and later. This is done by using the NI-DAQmx Simulated

Device option in the Create New menu of MAX. The simulated device’s driver is

loaded, and programs using it are fully verified.

Track C is designed to be used with a standard sound card and microphone. LabVIEW

includes simple VIs for analog input and analog output using the sound card built into

many PCs. This is convenient for laptops because the sound card and microphone are

usually already built-in.

Track A – NI Data Acquisition with Microphone
USB-6009, Microphone and LED

Suggested Hardware

The following schematic was drawn with NI Multisim, a widely used SPICE schematic capture

and simulation tool. Visit ni.com/Multisim for more info.

Setting Up Your Hardware for Your Selected Track

Qty Part Number Description Supplier

1 779321-22 Low-Cost USB DAQ National Instruments

1 270-092 Electret Microphone RadioShack

1 100 Ω Resistor RadioShack

1 220 Ω Resistor RadioShack

1 276-307 Light Emitting Diode (LED) RadioShack

Track B – Simulated NI Data Acquisition
NI-DAQmx Software Version 8.0 or later

Track C – Third-Party Sound Card
Sound card and Microphone

Suggested Hardware

* Laptops often have a built-in microphone (no plug-in microphone is required)

Qty Part Number Description Supplier

1 Standard Plug-In PC Microphone* RadioShack

What type of device should I use?

There are many types of data acquisition and control devices on the market. A few have been

highlighted above. The trade-off usually falls between sampling rate (samples/second),

resolution (bits), number of channels, and data transfer rate (usually limited by “bus” type:

USB, PCI, PXI, and so on). Multifunction DAQ (data acquisition) devices are ideal because

they can be used in a wide range of applications.

NI USB-6008 and USB-6009 Low-Cost USB

DAQ

The National Instruments USB-6009 device

provides basic data acquisition functionality for

applications such as simple data logging, portable

measurements, and academic lab experiments. The

USB-6008 and USB-6009 are ideal for students.

Create your own measurement application by

programming the

USB-6009 using LabVIEW and NI-DAQmx

driver software for Windows. For Mac OS X and

Linux® users, download and use the NI-DAQmx

Base driver.

 USB-6009 Specifications:

• Eight 14-bit analog inputs

• 12 digital I/O lines

• 2 analog outputs

• 1 counter

ni.com/daq
Linux® is the registered trademark of

Linus Torvalds in the U.S. and other

countries.

The next level of software is called Measurement & Automation Explorer (MAX).

MAX is a software interface that gives you access to all of your National Instruments

DAQ, GPIB, IMAQ, IVI, Motion, VISA, and VXI devices. The shortcut to MAX

appears on your desktop after installation. A picture of the icon is shown above. MAX is

mainly used to configure and test your National Instruments hardware, but it does offer

other functionality such as checking to see if you have the latest version of NI-DAQmx

installed. When you run an application using NI-DAQmx, the software reads the MAX

configuration to determine the devices you have configured. Therefore, you must

configure DAQ devices first with MAX.

The functionality of MAX falls into six categories:

• Data Neighborhood

• Devices and Interfaces

• IVI Instruments

• Scales

• Historical Data

• Software

This course will focus on Data Neighborhood, Devices and Interfaces, Scales, Software,

and you will learn about the functionality each one offers.

Exercise 1 – Testing Your Device (Track A)

In this exercise, use Measurement and Automation Explorer (MAX) to test

your USB-6009 DAQ device.

1. Launch MAX by double-clicking the icon on the desktop or by selecting Start»

Programs»National Instruments»Measurement & Automation.

2. Expand the Devices and Interfaces section to view the installed National

Instruments devices. MAX displays the National Instruments hardware and software

in the computer.

3. Expand the NI-DAQmx Devices section to view the installed hardware that is

compatible with NI-DAQmx. The device number appears in quotes following the

device name. The data acquisition VIs use this device number to determine which

device performs DAQ operations. Your hardware is listed as NI USB-6009:

“Dev1.”

4. Perform a self-test on the device by right-clicking it in the configuration tree and

choosing Self-Test or clicking Self-Test along the top of the window. This tests the

system resources assigned to the device. The device should pass the test because it is

already configured.

5. Check the pinout for your device. Right-click the device in the configuration tree

and select Device Pinouts or click Device Pinouts along the top of the center

window.

6. Open the test panels. Right-click the device in the configuration tree and select Test

Panels… or click Test Panels… along the top of the center window. With test

panels, you can test the available functionality of your device, analog input/output,

digital input/output, and counter input/output without doing any programming.

7. On the Analog Input tab of the test panels, change Mode to “Continuous” and Rate

to “10,000 Hz.” Click Start and hum or whistle into your microphone to observe the

signal that is plotted. Click Stop when you are done.

8. On the Digital I/O tab, notice that initially the port is configured to be all input.

Observe under Select State the LEDs that represent the state of the input lines.

Click the All Output button under Select Direction. Notice you now have switches

under Select State to specify the output state of the different lines. Toggle line 0 and

watch the LED light up. Click Close to close the test panels.

9. Close MAX.

End of Exercise 1 (Track A)

Exercise 1 – Setting Up Your Device (Track B)

In this exercise, use Measurement and Automation Explorer (MAX) to configure a

simulated DAQ device.

1. Launch MAX by double-clicking the icon on the desktop or by selecting Start»

Programs»National Instruments»Measurement & Automation.

2. Expand the Devices and Interfaces section to view the installed National

Instruments devices. MAX displays the National Instruments hardware and software

in the computer. The device number appears in quotes following the device name.

The data acquisition VIs use this device number to determine which device performs

DAQ operations.

3. Create a simulated DAQ device for use later in this course. Simulated devices are

a powerful tool for development without having hardware physically installed in

your computer. Right-click Devices and Interfaces and select Create New…»

NI-DAQmx Simulated Device. Click Finish. The simulated device appears yellow

in color.

4. Expand the M Series DAQ section. Select PCI-6220 or any other PCI device of

your choice. Click OK.

5. The NI-DAQmx Devices folder expands to show a new entry for PCI-6220:

“Dev1.” You have now created a simulated device.

6. Perform a self-test on the device by right-clicking it in the configuration tree and

choosing Self-Test or clicking Self-Test along the top of the window. This tests the

system resources assigned to the device. The device should pass the test because it is

already configured.

7. Check the pinout for your device. Right-click the device in the configuration tree

and select Device Pinouts or click Device Pinouts along the top of the center

window.

8. Open the test panels. Right-click the device in the configuration tree and select Test

Panels… or click Test Panels… along the top of the center window. The test panels

allow you to test the available functionality of your device, analog input/output,

digital input/output, and counter input/output without doing any programming.

9. On the Analog Input tab of the test panels, change Mode to “Continuous.” Click

Start and observe the signal that is plotted. Click Stop when you are done.

10. On the Digital I/O tab, notice that initially the port is configured to be all input.

Observe under Select State the LEDs that represent the state of the input lines.

Click the All Output button under Select Direction. Note that you now have

switches under Select State to specify the output state of the different lines. Click

Close to close the test panels.

11. Close MAX.

End of Exercise 1 (Track B)

Exercise 1 – Setting Up Your Device (Track C)

In this exercise, use Windows utilities to verify your sound card and prepare it for use

with a microphone.

1. Prepare your microphone for use. Double-click the volume control icon on the task

bar to open up the configuration window. You also can find the sound configuration

window from the Windows Control Panel: Start»Settings»Control Panel»Sounds

and Audio Devices»Advanced.

2. If you do not see a microphone section, go to Options»Properties»Recording and

place a checkmark in the box next to Microphone. This displays the microphone

volume control. Click OK.

3. Uncheck the Mute box if it is not already unchecked. Make sure that the volume is

turned up.

4. Close the volume control configuration window.

5. Open the sound recorder by selecting Start»Programs»Accessories»

Entertainment»Sound Recorder.

6. Click the record button and speak into your microphone. Notice how the sound

signal is displayed in the sound recorder.

7. Click Stop and close the sound recorder without saving changes when you are

finished.

Uncheck Mute

End of Exercise 1 (Track C)

LabVIEW

LabVIEW is a graphical programming language that uses icons instead of lines of

text to create applications. In contrast to text-based programming languages, where

instructions determine program execution, LabVIEW uses dataflow programming,

where the flow of data determines execution order.

You can purchase several add-on software toolkits for developing specialized

applications. All the toolkits integrate seamlessly in LabVIEW. Refer to the

National Instruments Web site for more information about these toolkits.

LabVIEW also includes several wizards to help you quickly configure your DAQ

devices and computer-based instruments and build applications.

LabVIEW Example Finder

LabVIEW features hundreds of example VIs you can use and incorporate into VIs

that you create. In addition to the example VIs that are shipped with LabVIEW,

you can access hundreds of example VIs on the NI Developer Zone

(zone.ni.com). You can modify an example VI to fit an application, or you can

copy and paste from one or more examples into a VI that you create.

LabVIEW programs are called virtual instruments (VIs).

 Controls are inputs and indicators are outputs.

Each VI contains three main parts:

• Front panel – How the user interacts with the VI

• Block diagram – The code that controls the program

• Icon/connector – The means of connecting a VI to other VIs

 In LabVIEW, you build a user interface by using a set of tools and objects. The user

interface is known as the front panel. You then add code using graphical representations

of functions to control the front panel objects. The block diagram contains this code. In

some ways, the block diagram resembles a flowchart.

 You interact with the front panel when the program is running. You can control the

program, change inputs, and see data updated in real time. Controls are used for inputs

such as adjusting a slide control to set an alarm value, turning a switch on or off, or

stopping a program. Indicators are used as outputs. Thermometers, lights, and other

indicators display output values from the program. These may include data, program

states, and other information.

 Every front panel control or indicator has a corresponding terminal on the block

diagram. When you run a VI, values from controls flow through the block diagram,

where they are used in the functions on the diagram, and the results are passed into

other functions or indicators through wires.

Use the Controls palette to place controls and indicators on the front panel. The

Controls palette is available only on the front panel. To view the palette, select

Window»Show Controls Palette. You also can display the Controls palette by right-

clicking an open area on the front panel. Tack down the Controls palette by clicking the

pushpin on the top left corner of the palette.

Use the Functions palette to build the block diagram. The Functions palette is available

only on the block diagram. To view the palette, select Window»Show Functions

Palette. You also can display the Functions palette by right-clicking an open area on

the block diagram. Tack down the Functions palette by clicking the pushpin on the top

left corner of the palette.

If you enable the automatic selection tool and you move the cursor over objects on the

front panel or block diagram, LabVIEW automatically selects the corresponding tool

from the Tools palette. Toggle automatic selection tool by clicking the Automatic

Selection Tool button in the Tools palette.

Use the Operating Tool to change the values of a control or select the text within a

control.

Use the Positioning/Resizing Tool to select, move, or resize objects. The Positioning

Tool changes shape when it moves over a corner of a resizable object.

Use the Labeling Tool to edit text and create free labels. The Labeling Tool changes to

a cursor when you create free labels.

Use the Wiring Tool to wire objects together on the block diagram.

Other important tools:

• Click the Run button to run the VI. While the VI runs, the Run button appears with a

black arrow if the VI is a top-level VI, meaning it has no callers and therefore is not a

subVI.

• Click the Continuous Run button to run the VI until you abort or pause it. You also can

click the button again to disable continuous running.

• While the VI runs, the Abort Execution button appears. Click this button to stop the VI

immediately.

Note: Avoid using the Abort Execution button to stop a VI. Either let the VI complete its data

flow or design a method to stop the VI programmatically. By doing so, the VI is at a known

state. For example, place a button on the front panel that stops the VI when you click it.

• Click the Pause button to pause a running VI. When you click the Pause button,

LabVIEW highlights on the block diagram the location where you paused execution. Click

the Pause button again to continue running the VI.

• Select the Text Settings pull-down menu to change the font settings for the VI, including

size, style, and color.

• Select the Align Objects pull-down menu to align objects along axes, including vertical,

top edge, left, and so on.

• Select the Distribute Objects pull-down menu to space objects evenly, including gaps,

compression, and so on.

• Select the Resize Objects pull-down menu to change the width and height of front panel

objects.

• Select the Reorder pull-down menu when you have objects that overlap each other

and you want to define which one is in front or back of another. Select one of the

objects with the Positioning Tool and then select from Move Forward, Move

Backward, Move To Front, and Move To Back.

Note: The following items only appear on the block diagram toolbar.

• Click the Execution Highlighting button to see the flow of data through the block

diagram. Click the button again to disable execution highlighting.

• Click the Retain Wire Values button to save the wire values at each point in the

flow of execution so that when you place a probe on a wire, you can immediately

obtain the most recent value of the data that passed through the wire.

• Click the Step Into button to single-step into a loop, subVI, and so on. Single-

stepping through a VI steps through the VI node to node. Each node blinks to denote

when it is ready to execute. By stepping into the node, you are ready to single-step

inside the node.

• Click the Step Over button to step over a loop, subVI, and so on. By stepping over

the node, you execute the node without single-stepping through the node.

• Click the Step Out button to step out of a loop, subVI, and so on. By stepping out of

a node, you complete single-stepping through the node and go to the next node.

Additional Tools

Retain Wire

Values

When you create an object on the front panel, a terminal is created on the block

diagram. These terminals give you access to the front panel objects from the block

diagram code.

Each terminal contains useful information about the front panel object it corresponds to,

and uses color and symbols to provide information about the data type. For example, the

dynamic data type is a polymorphic data type represented by dark blue terminals.

Boolean terminals are green with TF lettering.

In general, blue terminals should wire to blue terminals, green to green, and so on. This

is not a hard-and-fast rule; you can use LabVIEW to connect a blue terminal (dynamic

data) to an orange terminal (fractional value), for example. But in most cases, look for a

match in colors.

Controls have a thick border and an arrow on the right side. Indicators have a thin

border and an arrow on the left side. Logic rules apply to wiring in LabVIEW: Each

wire must have one (but only one) source (or control), and each wire may have multiple

destinations (or indicators).

LabVIEW uses many common data types – Boolean, numeric, strings, clusters, and

so on.

The color and symbol of each terminal indicate the data type of the control or indicator.

Control terminals have a thicker border than indicator terminals. Also, arrows appear on

front panel terminals to indicate whether the terminal is a control or an indicator. An

arrow appears on the right if the terminal is a control and on the left if the terminal is an

indicator.

Definitions

• Array: Arrays group data elements of the same type. An array consists of elements

and dimensions. Elements are the data that make up the array. A dimension is the

length, height, or depth of an array. An array can have one or more dimensions and

as many as (231) – 1 elements per dimension, memory permitting.

• Cluster: Clusters group data elements of mixed types, much like a bundle of wires

in a telephone cable, where each wire in the cable represents a different element of

the cluster.

See Help»Search the LabVIEW Help… for more information. The LabVIEW User

Manual on ni.com provides additional references for data types found in LabVIEW.

LabVIEW follows a dataflow model for running VIs. A block diagram node executes

when all its inputs are available. When a node completes execution, it supplies data to

its output terminals and passes the output data to the next node in the dataflow path.

Visual Basic, C++, JAVA, and most other text-based programming languages follow a

control flow model of program execution. In control flow, the sequential order of

program elements determines the execution order of a program.

Consider the block diagram above. It adds two numbers and then multiplies by 2 from

the result of the addition. In this case, the block diagram executes from left to right, not

because the objects are placed in that order but because one of the inputs of the Multiply

function is not valid until the Add function has finished executing and passed the data to

the Multiply function. Remember that a node executes only when data are available at

all of its input terminals, and it supplies data to its output terminals only when it finishes

execution. In the second piece of code, the Simulate Signal Express VI receives input

from the controls and passes its result to the graph.

You may consider the add-multiply and the simulate signal code to coexist on the same

block diagram in parallel. This means that they begin executing at the same time and run

independently of one another. If the computer running this code had multiple

processors, these two pieces of code could run independently of one another (each on its

own processor) without any additional coding.

When your VI is not executable, a broken arrow is displayed in the Run button in the

palette.

• Finding Errors: To list errors, click on the broken arrow. To locate the bad object,

click on the error message.

• Execution Highlighting: Animates the diagram and traces the flow of the data,

allowing you to view intermediate values. Click on the light bulb on the toolbar.

• Probe: Used to view values in arrays and clusters. Click on wires with the Probe tool

or right-click on the wire to set probes.

• Retain Wire Values: Used with probes to view the values from the last iteration of

the program.

• Breakpoint: Sets pauses at different locations on the diagram. Click on wires or

objects with the Breakpoint tool to set breakpoints.

Exercise 2 – Acquiring a Signal with DAQ (Track A)

Complete the following steps to create a VI that acquires data continuously from your

DAQ device.

1. Launch LabVIEW.

2. In the Getting Started window, click the File»New or More … link to display

the New dialog box.

3. Open a data acquisition template. From the Create New list, select VI»From

Template»DAQ»Data Acquisition with NI-DAQmx.vi and click OK.

4. Display the block diagram by clicking it or by selecting Window»Show Block

Diagram. Read the instructions written there about how to complete the program.

5. Double-click the DAQ Assistant to launch the configuration wizard.

6. Configure an analog input operation.

 a. Choose Acquire Signals»Analog Input»Voltage.

 b. Choose Dev1 (USB-6009)»ai0 to acquire data on analog input channel 0 and

 click Finish.

 c. In the next window, define the parameters of your analog input operation.

 To choose an input range that works well with your microphone, on the Settings

 tab enter 2 V for the maximum and –2 V for the minimum. Under timing

settings choose “Continuous” for the acquisition mode and enter 10000 for the

rate. Leave all other choices set to their default values. Click OK to exit the

wizard.

7. Place the Filter Express VI to the right of the DAQ Assistant on the block diagram.

From the Functions palette, select Express»Signal Analysis»Filter and place it on

the block diagram inside the While Loop. When you bring up the Functions palette,

press the small pushpin in the upper left-hand corner of the palette. This tacks down

the palette so that it remains visible. This step is omitted in the following exercises,

but you should repeat it. In the configuration window under Filtering Type, choose

“Highpass.” Under Cutoff Frequency, use a value of "300 Hz." Click OK.

8. Make the following connections on the block diagram by hovering your mouse over the terminal

so that it becomes the wiring tool and clicking once on each of the terminals you wish to connect:

 a. Connect the Data output terminal of the DAQ Assistant VI to the Signal input of the Filter VI.

 b. Create a graph indicator for the filtered signal by right-clicking on the Filtered Signal output

 terminal and choosing Create»Graph Indicator.

9. Return to the front panel by selecting Window»Show Front Panel or by pressing <Ctrl-E>.

10. Run your program by clicking the Run button. Hum or whistle into the microphone to observe the

changing voltage on the graph.

11. Click Stop once you are finished.

12. Save the VI as Exercise 2 – Acquire.vi in your Exercises folder and close it.

Note: The solution to this exercise is printed in the back of this manual.

Tip: You can place the DAQ

Assistant on your block diagram

from the Functions palette.

Right-click the block diagram to

open the Functions palette and go

to Express»Input to find it.

End of Exercise 2 (Track A)

Exercise 2 – Acquiring a Signal with DAQ (Track B)

Complete the following steps to create a VI that acquires data continuously from your

simulated DAQ device.

1. Launch LabVIEW.

2. In the Getting Started window, click the File»New or More … link to display

the New dialog box.

3. Open a data acquisition template. From the Create New list, select VI»From

Template»DAQ»Data Acquisition with NI-DAQmx.vi and click OK.

4. Display the block diagram by clicking it or by selecting Window»Show Block

Diagram. Read the instructions written there about how to complete the program.

5. Double-click the DAQ Assistant to launch the configuration wizard.

6. Configure an analog input operation.

a. Choose Acquire Signals»Analog Input»Voltage.

b. Choose Dev1 (PCI-6220)»ai0 to acquire data on analog input channel 0 and click

Finish.

c. In the next window, define the parameters of your analog input operation. On the

task timing tab, choose “Continuous” for the acquisition mode, enter 10000 for

samples to read, and 10000 for the rate. Leave all the other choices set to their

default values. Click OK to exit the wizard.

7. Create a graph indicator for the signal by right-clicking on the “Data” output on the

DAQ Assistant and choosing Create»Graph Indicator.

8. Return to the front panel by selecting Window»Show Front Panel or by pressing

<Ctrl-E>.

9. Run your program by clicking the run button. Observe the simulated sine wave on the

graph.

10. Click Stop once you are finished.

11. Save the VI as Exercise 2 – Acquire.vi in the Exercises folder. Close the VI.

Notes:

• The solution to this exercise is printed in the back of this manual.

• You can place the DAQ Assistant on your block diagram from the Functions palette.
Right-click the block diagram to open the Functions palette and go to Express»Input
to find it. When you bring up the Functions palette, press the small pushpin in the
upper left-hand corner of the palette. This tacks down the palette so that it doesn’t
disappear. This step is omitted in the following exercises, but you should repeat it.

End of Exercise 2 (Track B)

Exercise 2 – Acquiring a Signal with the Sound Card (Track C)

Complete the following steps to create a VI that acquires data from your sound card.

1. Launch LabVIEW.

2. In the Getting Started window, click the Blank VI link.

3. Display the block diagram by pressing <Ctrl-E> or selecting Window»Show Block

Diagram.

4. Place the Acquire Sound Express VI on the block diagram. Right-click to open the

functions palette and select Express»Input»Acquire Sound. Place the Express VI

on the block diagram.

5. In the configuration window under #Channels, select 1 from the pull-down list.

Under Duration(s), use a value of 5 seconds. Click OK.

6. Place the Filter Express VI to the right of the Acquire Signal VI on the block

diagram. From the Functions palette, select Express»Signal Analysis»Filter and

place it on the block diagram. In the configuration window under Filtering Type,

choose “Highpass.” Under Cutoff Frequency, use a value of 300 Hz. Click OK.

7. Make the following connections on the block diagram by hovering your mouse over

the terminal so that it becomes the wiring tool and clicking once on each of the

terminals you wish to connect:

a. Connect the Data output terminal of the Acquire Sound VI to the Signal input

of the Filter VI.

b. Create a graph indicator for the filtered signal by right-clicking on the Filtered

Signal output terminal and choose Create»Graph Indicator.

8. Return to the front panel by pressing <Ctrl-E> or Window»Show Front Panel.

9. Run your program by clicking the Run button. Hum or whistle into your

microphone and observe the data you acquire from your sound card.

10. Save the VI as Exercise 2 – Acquire.vi in the Exercises folder.

11. Close the VI.

Note: The solution to this exercise is printed in the back of this manual.

End of Exercise (Track C)

The Context Help window displays basic information about LabVIEW objects when

you move the cursor over each object. Objects with context help information include

VIs, functions, constants, structures, palettes, properties, methods, events, and dialog

box components.

To display the Context Help window, select Help»Show Context Help, press the

<Ctrl-H> keys, or press the Show Context Help Window button in the toolbar.

Connections displayed in Context Help:

Required – bold

Recommended – normal

Optional – dimmed

Additional Help

• VI, Function, & How-To Help is also available

– Help»VI, Function, & How-To Help

– Right-click the VI icon and choose Help, or

– Choose “Detailed Help” on the Context Help window

• LabVIEW Help – reference style help

– Help»Search the LabVIEW Help…

LabVIEW has many keystroke shortcuts that make working easier. The most common

shortcuts are listed above.

While the Automatic Selection Tool is great for choosing the tool you would like to use

in LabVIEW, there are sometimes cases when you want manual control. Once the

Automatic Selection Tool is turned off, use the Tab key to toggle between the four most

common tools (Operate Value, Position/Size/Select, Edit Text, Set Color on front panel

and Operate Value, Position/Size/Select, Edit Text, Connect Wire on block diagram).

Once you are finished with the tool you chose, you can press <Shift-Tab> to turn the

Automatic Selection Tool back on.

In the Tools»Options… dialog, there are many configurable options for customizing

your front panel, block diagram, colors, printing, and so on.

Similar to the LabVIEW options, you can configure VI-specific properties by going to

File»VI Properties… .There you can document the VI, change the appearance of the

window, and customize it in several other ways.

Both the While and For Loops are located on the Functions»Structures palette. The

For Loop differs from the While Loop in that the For Loop executes a set number of

times. A While Loop stops executing the subdiagram only if the value at the conditional

terminal exists.

While Loops

Similar to a Do loop or a Repeat-until loop in text-based programming languages, a

While Loop, shown at the top right, executes a subdiagram until a condition is met. The

While Loop executes the subdiagram until the conditional terminal, an input terminal,

receives a specific Boolean value. The default behavior and appearance of the

conditional terminal is Stop If True. When a conditional terminal is Stop If True, the

While Loop executes its subdiagram until the conditional terminal receives a TRUE

value. The iteration terminal (an output terminal), shown at left, contains the number

of completed iterations. The iteration count always starts at zero. During the first

iteration, the iteration terminal returns 0.

For Loops

A For Loop, shown above, executes a subdiagram a set number of times. The value in

the count terminal (an input terminal) represented by the N, indicates how many times to

repeat the subdiagram. The iteration terminal (an output terminal), shown at left,

contains the number of completed iterations. The iteration count always starts at zero.

During the first iteration, the iteration terminal returns 0.

Place loops in your diagram by selecting them from the Functions palette:

• When selected, the mouse cursor becomes a special pointer that you use to enclose the

section of code you want to include in the While Loop.

• Click the mouse button to define the top-left corner and then click the mouse button again at

the bottom-right corner. The While Loop boundary appears around the selected code.

• Drag or drop additional nodes in the While Loop if needed.

LabVIEW 7.0 introduced a new type of subVI called Express VIs. These are interactive

VIs that have a configuration dialog box that helps the user customize the functionality

of the Express VI. LabVIEW then generates a subVI based on these settings.

SubVIs are VIs (consisting of a front panel and a block diagram) that are used within

another VI.

Functions are the building blocks of all VIs. Functions do not have a front panel or a

block diagram.

LabVIEW includes several hundred prebuilt functions to help you acquire, analyze, and

present data. You would generally use these functions as outlined on the slide above.

LabVIEW Toolkits

Additional toolkits are available for adding domain-specific functionality to LabVIEW.

These toolkits include:

Application Deployment and

Targeting Modules

 * LabVIEW Mobile Module

 * LabVIEW Real-Time Module

 * LabVIEW FPGA Module

 * NI Vision Development Module for

LabVIEW

Embedded System Deployment

 * DSP Test Integration Toolkit

 * Embedded test integration toolkits

 * Digital Filter Design Toolkit

 * LabVIEW FPGA Module

Signal Processing and Analysis

 * Sound and Vibration Toolkit

 * Advanced Signal Processing Toolkit

 * Modulation Toolkit

 * Spectral Measurements Toolkit

 * Order Analysis Toolkit

 * Digital Filter Design Toolkit

Software Engineering and

Optimization Tools

 * Real-Time Execution Trace Toolkit

 * Express VI Development Toolkit

 * State Diagram Toolkit

 * VI Analyzer Toolkit

Control Design and Simulation

 * LabVIEW Control Design and

Simulation Module

 * LabVIEW Real-Time Module

 * System Identification Toolkit

 * State Diagram Toolkit

Image Processing and Acquisition

 * Vision Development Module for

LabVIEW

 * NI Vision Builder for Automated

Inspection

 * NI-IMAQ for IEEE 1394

ni.com/toolkits

Use the buttons on top of the palette windows to navigate, search, and edit the palettes.

You can search for controls, VIs, and functions that either contain certain words or start with

certain words. Double-clicking a search result opens the palette that contains the search result.

You also can click and drag the name of the control, VI, or function directly to the front panel or

block diagram.

Creating SubVIs

After you build a VI, you can use it in another VI. A VI called from the block diagram of another

VI is called a subVI. You can reuse a subVI in other VIs. To create a subVI, you need to build a

connector pane and create an icon.

A subVI node corresponds to a subroutine call in text-based programming languages. A block

diagram that contains several identical subVI nodes calls the same subVI several times.

The subVI controls and indicators receive data from and return data to the block diagram

of the calling VI. Click the Select a VI icon or text on the Functions palette, navigate to and

double-click a VI, and place the VI on a block diagram to create a subVI call to that VI.

You can easily customize subVI input and output terminals as well as the icon. Follow the

instructions below to quickly create a subVI.

Creating SubVIs from Sections of a VI

Convert a section of a VI into a subVI by using the Positioning tool to select the section of the

block diagram you want to reuse and selecting Edit»Create SubVI. An icon for the new subVI

replaces the selected section of the block diagram. LabVIEW creates controls and indicators for

the new subVI, automatically configures the connector pane based on the number of control and

indicator terminals you selected, and wires the subVI to the existing wires.

See Help»Search the LabVIEW Help…»SubVIs for more information.

A subVI node corresponds to a subroutine call in text-based programming languages. The node

is not the subVI itself, just as a subroutine call statement in a program is not the subroutine itself.

A block diagram that contains several identical subVI nodes calls the same subVI several times.

The modular approach makes applications easier to debug and maintain.

The functionality of the subVI does not matter for this example. The important point is the

passing of two numeric inputs and one numeric output.

Exercise 3.1 – Analysis (Tracks A, B, and C)

Create a VI that produces a sine wave with a specified frequency and displays the data

on a waveform chart until stopped by the user.

1. Open a blank VI from the Getting Started screen.

2. Place a chart on the front panel. Right-click to open the Controls palette and select

Controls»Modern»Graph»Waveform Chart.

3. Place a dial control on the front panel. From the Controls palette, select Controls»

Modern»Numeric»Dial. Notice that when you first place the control on the front

panel, the label text is highlighted. While this text is highlighted, type Frequency

In to give a name to this control.

4. Go to the block diagram (<Ctrl-E>) and put down a While Loop. Right-click to

open the Functions palette and select Express»Execution Control»While Loop.

Click and drag on the block diagram to make the While Loop the correct size. Select

the waveform chart and dial and drag them inside the While Loop if they are not

already. Notice that a Stop button is already connected to the conditional terminal of

the While Loop.

1. Place the Simulate Signal Express VI on the block diagram. From the Functions

palette, select Express»Signal Analysis»Simulate Signal and place it on the block

diagram inside the While Loop. In the configuration window under Timing, choose

“Simulate acquisition timing.” Click OK.

6. Place a Tone Measurements Express VI on the block diagram (Express»Signal

Analysis»Tone). In the configuration window, choose Amplitude and Frequency

measurements in the Single Tone Measurements section. Click OK.

7. Make the following connections on the block diagram by hovering your mouse over

the terminal so that it becomes the wiring tool and clicking once on each of the

terminals you wish to connect:

a. Connect the “Sine” output terminal of the Simulate Signal VI to the “Signals”

input of the Tone Measurements VI.

b. Connect the “Sine” output to the waveform chart.

c. Create indicators for the amplitude and frequency measurements by right-

clicking on each of the terminals of the Tone Measurements Express VI and

selecting Create»Numeric Indicator.

d. Connect the “Frequency In” control to the “Frequency” terminal of the

 Simulate Signal VI.

8. Return to the front panel and run the VI. Move the “Frequency In” dial and observe

the frequency of the signal. Click the Stop button once you are finished.

9. Save the VI as Exercise 3.1 – Simulated.vi.

10. Close the VI.

Notes

• When you bring up the Functions palette, press the small pushpin in the upper

left-hand corner of the palette. This tacks down the palette so that it doesn’t

disappear. This step is omitted in the following exercises, but you should repeat it.

• The solution to this exercise is printed in the back of this manual.

End of Exercise 3.1 (Tracks A, B, and C)

Exercise 3.2 – Analysis (Track A)

Create a VI that measures the frequency of a filtered signal from your USB-6009 DAQ

device and displays the acquired signal on a waveform chart. The instructions are

similar to Exercise 3.1, but you use DAQ Assistant in place of the Simulate Signal VI

and you use Filter Express VI. Try to do this without following the instructions.

1. Open a blank VI.

2. Place a waveform chart on the front panel. Right-click to open the Controls palette

and select Controls»Modern»Graph»Waveform Chart.

3. Place a numeric meter on the front panel. The meter is found in Controls»Modern»

Numeric»Meter.

4. Right-click the y-axis on the waveform chart and deselect AutoScale Y.

5. Change the scale on the y-axis to –0.15 to 0.15 V by double-clicking the maximum

and minimum axis values and typing the new value. Change the scale of the meter to

100 to 2000.

6. Go to the block diagram and place a While Loop around the chart and the meter

(Express»Execution Control»While Loop).

7. Place the DAQ Assistant on the block diagram (Express»Input»DAQ Assistant).

Choose analog input on channel ai0 of your device and click Finish. On the Task

Timing tab, choose “Continuous” for the acquisition mode. If you are using the

USB-6009, change the Input Range to – 2 to 2, the number of Samples to Read to

1000, and the Rate (Hz) to 44100.

8. Place the Filter Express VI to the right of the DAQ Assistant on the block diagram.

From the Functions palette, select Express»Signal Analysis»Filter and place it on

the block diagram inside the While Loop. In the configuration window under

Filtering Type, choose “Highpass.” Under Cutoff Frequency, use a value of 300 Hz.

Click OK.

9. Connect the “Data” output terminal of the DAQ Assistant to the “Signal” input of

the Filter VI.

10. Connect the waveform chart to the “Filtered Signal” output.

11. Place a Tone Measurements Express VI on the block diagram (Express»Signal

Analysis»Tone). Select “Frequency” under Single Tone Measurements.

12. Connect the output of the Filter VI to the “Signals” input of the Tone Measurements

Express VI. Also, connect the “Frequency” output to the meter.

13. Return to the front panel and run the VI. Observe your acquired signal and its

frequency and amplitude. Hum or whistle into the microphone and observe the

frequency that you are producing.

14. Save the VI as Exercise 3.2 - Data.vi.

15. Close the VI.

Note: The solution to this exercise is printed in the back of this manual.

End of Exercise 3.2 (Track A)

Exercise 3.2 – Analysis (Track B)

Create a VI that measures the frequency of a filtered simulated signal and shows the

difference between the filtered and unfiltered signal. You have to simulate the noise in

the Simulate Signal Express VI. Try to do this without following the instructions.

1. Open a blank VI.

2. Place two waveform charts on the front panel. Right-click to open the Controls

palette and select Controls»Modern»Graph»Waveform Chart.

3. Place a numeric meter on the front panel. The Meter is found in Controls»Modern»

Numeric»Meter.

4. Right-click the y-axis on each waveform chart and deselect AutoScale Y.

5. Change the scale on the y-axis on both charts to –1 to 1 V by double-clicking the

maximum and minimum axis values and typing the new value. Change the scale of

the meter to 0 to 30.

6. Go to the block diagram and put a While Loop around the charts and the meters

(Express»Execution Control»While Loop).

7. Place a Simulate Signal Express VI on the block diagram (Express»Input»

Simulate Sig). Change the Frequency (Hz) to 20, Select to add noise, and set the

Samples per Second (Hz) to 10000.

8. Ensure that the Noise Type is “Uniform White Noise” and the Noise Amplitude is

“0.2.”

9. Place the Filter Express VI to the right of the DAQ Assistant on the block diagram.

From the Functions palette, select Express»Signal Analysis»Filter and place it on

the block diagram inside the While Loop. In the configuration window under

Filtering Type, choose “Lowpass.” Under Cutoff Frequency, use a value of 35 Hz.

Click OK.

10. Connect the output terminal of the Simulate Signal VI to the “Signal” input of the

Filter VI. Connect the waveform charts to the “Filtered Signal” output and the

output of the Simulate Signal VI.

11. Place a Tone Measurements Express VI on the block diagram (Express»Signal

Analysis»Tone). Select “Frequency” under Single Tone Measurements.

12. Connect the output of the Filter VI to the “Signals” input of the Tone Measurements

Express VI. Also, connect the “Frequency” output to the meter.

13. Return to the front panel and run the VI. Observe your acquired signal and its

frequency and amplitude. Hum or whistle into the microphone and observe the

frequency that you are producing.

14. Save the VI as Exercise 3.2 - Data.vi.

15. Close the VI.

Note: The solution to this exercise is printed in the back of this manual.

End of Exercise 3.2 (Track B)

Exercise 3.2 – Analysis (Track C)

Create a VI that measures the frequency of the signal from your sound card and displays

the acquired signal on a waveform chart. The instructions are similar to Exercise 3.1, but

you use the Acquire Sound Signal VI in place of the Simulate Signal VI and a Filter

Express VI. Try to do this without following the instructions.

1. Open a blank VI.

2. Place a waveform chart on the front panel. Right-click to open the Controls palette

and select Controls»Modern»Graph»Waveform Chart.

3. Place a numeric meter on the front panel. The meter is found in Controls»

Numeric»Meter.

4. Right-click the y-axis on the waveform chart and deselect AutoScale Y.

5. Change the scale on the y-axis to –1 to 1 V by double-clicking the maximum and

minimum axis values and typing the new value. Change the scale of the meter to

100 to 2000.

6. Go to the block diagram and put a While Loop down (Express»Execution

Control»While Loop).

7. Place the Acquire Sound Express VI on the block diagram (Express»Input»

Acquire Sound).

8. Change the sample rate to 44100 and Click OK.

9. Place a Filter Express VI on the block diagram. In the configuration window, choose

a highpass filter and a cutoff frequency of 300 Hz.

10. Place a Tone Measurements Express VI on the block diagram (Express»Signal

Analysis»Tone). In the configuration window, choose “Amplitude” and

“Frequency” measurements in the Single Tone Measurements section.

11. Connect the meter to the “Frequency” output of the Tone Measurements VI.

12. Connect the “Data” terminal of the Acquire Sound Express VI to the “Signal” input

of the Filter VI.

13. Connect the “Filtered Signal” terminal of the Filter VI to the “Signals” input of the

Tone Measurements VI. Select “Frequency” under Single Tone Measurements.

14. Return to the front panel and run the VI. Observe the signal from your sound card

and its amplitude and frequency. Hum or whistle into the microphone and observe

the amplitude and frequency you are producing.

15. Save the VI as Exercise 3.2-Data.vi. Close the VI.

Note: The solution to this exercise is printed in the back of this manual.

End of Exercise 3.2 (Track C)

Case Structure

The case structure has one or more subdiagrams, or cases, one of which executes when

the structure executes. The value wired to the selector terminal determines which case to

execute and can be Boolean, string, integer, or enumerated type. Right-click the

structure border to add or delete cases. Use the Labeling tool to enter value(s) in the case

selector label and configure the value(s) handled by each case. It is found at Functions»

Programming»Structures»Case Structure.

Select

Returns the value wired to the t input or f input, depending on the value of s. If s is

TRUE, this function returns the value wired to t. If s is FALSE, this function returns the

value wired to f. The connector pane displays the default data types for this polymorphic

function. It is found at Functions»Programming» Comparison»Select.

• Example A: Boolean input. Simple if-then case. If the Boolean input is TRUE, the

 true case executes; otherwise the FALSE case executes.

• Example B: Numeric input. The input value determines which box to execute. If

out of range of the cases, LabVIEW chooses the default case.

• Example C: When the Boolean passes a TRUE value to the Select VI, the value 5

is passed to the indicator. When the Boolean passes a FALSE value to the Select VI,

0 is passed to the indicator.

Use LabVIEW measurement data files to save data that the Write Measurement File

Express VI generates. The LabVIEW data file is a tab-delimited text file you can open

with a spreadsheet application or a text-editing application. In addition to the data an

Express VI generates, the .lvm file includes information about the data, such as the

date and time the data was generated.

File I/O operations pass data from memory to and from files. In LabVIEW, you can use

File I/O functions to:

• Open and close data files

• Read data from and write data to files

• Read from and write to spreadsheet-formatted files

• Move and rename files and directories

• Change file characteristics

• Create, modify, and read a configuration file

• Write to or read from LabVIEW measurement files

In the next example, examine how to write to or read from LabVIEW measurement files

(*.lvm files).

Exercise 3.3 – Decision Making and Saving Data (Tracks A, B, and C)

Create a VI that you can use to save your data to file if the frequency of your data

goes below a user-controlled limit.

1. Open Exercise 3.2 – Data.vi.

2. Go to File»Save As… and save it as Exercise 3.3 – Decision Making and

Saving Data. In the Save As dialog box, make sure substitute copy for original

is selected and click Continue…

3. Add a case structure to the block diagram inside the While Loop (Functions»

Programming»Structures»Case Structure).

4. Inside the “true” case of the case structure, add a Write to Measurement File

Express VI (Functions»Programming»File I/O»Write to Measurement File).

a. In the configuration window that opens, choose “Save to series of files (multiple

files).” Note the default location your file will be saved to and change it if you

wish.

b. Click Settings… and choose “Use next available file name” under the Existing

Files heading.

c. Under File Termination, choose to start a new file after 10 segments. Click OK

twice.

5. Add code so that if the frequency computed from the Tone Measurements Express

VI goes below a user-controlled limit, the data will be saved to file. Hint: Go to

Functions»Programming»Comparison»Less?

6. Remember to connect your data from the Filter Express VI to the “Signals” input of

the Write to Measurement File VI. If you need help, refer to the solution of this

exercise.

7. Go to the front panel and run your VI. Vary your frequency limit and then stop

the VI.

8. Navigate to My Documents»LabVIEW Data (or the location you specified) and

open one of the files that was saved there. Examine the file structure and check to

verify that 10 segments are in the file.

9. Save your VI and close it.

Note: The solution to this exercise is printed in the back of this manual.

End of Exercise 3.3 (Tracks A, B, and C)

Programming Model for the Intermediate File VIs

This same programming model applies to data acquisition, instrument control, file I/O, and

most other communication schemes. In most instances, you open the file or communication

channel, read and write multiple times, and then close or end the communication. It is also good

programming practice to check for errors at the end. Remember this programming model when

you move on to more advanced programming or look inside DAQ, communication, or File I/O

Express VIs.

File I/O VIs and Functions

Use the File I/O VIs and functions to open and close files; read from and write to files; create

directories and files you specify in the path control; retrieve directory information; and write

strings, numbers, arrays, and clusters to files.

Use the high-level File I/O VIs located on the top row of the palette to perform common I/O

operations, such as writing to or reading from various types of data. Acceptable types can

include characters or lines in text files, 1D or 2D arrays of single-precision numeric values in

spreadsheet text files, 1D or 2D arrays of single-precision numeric values in binary files, or

16-bit signed integers in binary files.

Use low-level File I/O VIs and functions located on the middle row of the palette as well as the

Advanced File Functions to control each file I/O operation individually.

Use the principal low-level functions to create or open, write data to, read data from, and close

a file. You also can use low-level functions to create directories; move, copy, or delete files; list

directory contents; change file characteristics; or manipulate paths.

Refer to NI Developer Zone for more information about choosing a file format.

Controls and indicators are front panel items that you can use to interact with your

program to provide input and display results. You can access controls and indicators by

right-clicking the front panel.

In addition, you obtain additional controls and indicators when you install toolkits and

modules.

For example, when you install the control design tools, you can use specialized plots,

such as Bode and Nyquist, that are not available by default.

The waveform chart is a special numeric indicator that displays one or more plots. It is

located on the Controls»Modern»Graph palette. Waveform charts can display single

or multiple plots. The following front panel shows an example of a multiplot waveform

chart.

You can change the minimum and maximum values of either the x-axis or y-axis by

double-clicking on the value with the labeling tool and typing the new value. Similarly,

you can change the label of the axis. You can also right-click the plot legend and change

the style, shape, and color of the trace that is displayed on the chart.

Graphs are very powerful indicators in LabVIEW. You can use these highly

customizable tools to concisely display a great deal of information.

With the properties page of the graph, you can display settings for plot types, scale and

cursor options, and many other features of the graph. To open the properties page,

right-click the graph on the front panel and choose Properties.

You can also create technical-paper-quality graphics with the “export simplified image”

function. Right-click the graph and select Data Operations»Export Simplified

Image…

For Loops and While Loops can index and accumulate arrays at their boundaries. This is

known as auto-indexing.

• The indexing point on the boundary is called a tunnel

• The For Loop is auto-indexing-enabled by default

• The While Loop is auto-indexing-disabled by default

Examples:

• Enable auto-indexing to collect values within the loop and build the array. All values are

placed in the array upon exiting the loop.

• Disable auto-indexing if you are interested only in the final value.

To create an array control or indicator as shown, select an array on the

Controls»Modern»

Array, Matrix, and Cluster palette, place it on the front panel, and drag a control or

indicator into the array shell. If you attempt to drag an invalid control or indicator such

as an XY graph into the array shell, you are unable to drop the control or indicator in the

array shell.

You must insert an object in the array shell before you use the array on the block

diagram. Otherwise, the array terminal appears black with an empty bracket.

To add dimensions to an array one at a time, right-click the index display and select

Add Dimension from the shortcut menu. You also can use the Positioning tool to resize

the index display until you have as many dimensions as you want.

1D Array Viewing a Single Element

1D Array Viewing Multiple Elements

2D Array Viewing a Single Element

2D Array Viewing Multiple Elements

Time Delay

The Time Delay Express VI delays execution by a specified number of seconds.

Following the rules of dataflow programming, the While Loop does not iterate until all

tasks inside of it are complete, thus delaying each iteration of the loop.

Timed Loops

Executes each iteration of the loop at the period you specify. Use the timed loop when

you want to develop VIs with multirate timing capabilities, precise timing, feedback on

loop execution, timing characteristics that change dynamically, or several levels of

execution priority.

Double-click the Input Node or right-click the Input Node and select Configure Timed

Loop from the shortcut menu to display the Loop Configuration dialog box, where you

can configure the timed loop. The values you enter in the Loop Configuration dialog

box appear as options in the Input Node.

Wait Until Next ms Multiple

This function waits until the value of the millisecond timer becomes a multiple of the

specified millisecond multiple to help you synchronize activities. You can call this

function in a loop to control the loop execution rate. However, it is possible that the first

loop period might be short. This function makes asynchronous system calls, but the

nodes themselves function synchronously. Therefore, it does not complete execution

until the specified time has elapsed. This function can be found at Functions»

Programming»Timing»Wait Until Next ms Multiple.

Properties are all the qualities of a front panel object. With properties, you can

set or read such characteristics as foreground and background color, data

formatting and precision, visibility, descriptive text, size and location on the

front panel, and so on.

Exercise 4 – Manual Analysis (Tracks A, B, and C)

Create a VI that displays simulated data on a waveform graph and measures the

frequency and amplitude of that data. Use cursors on the graph to verify the

frequency and amplitude measurements.

1. Open Exercise 3.1 – Simulated.vi.

2. Save the VI as Exercise 4 – Manual Analysis.vi.

3. Go to the block diagram and remove the While Loop. Right-click the edge of the

loop and choose Remove While Loop so that the code inside the loop does not get

deleted.

4. Delete the Stop control.

5. On the front panel, replace the waveform chart with a waveform graph. Right-click

the chart and select Replace»Modern»Graph»Waveform Graph.

6. Make the cursor legend viewable on the graph. Right-click on the graph and select

Visible Items»Cursor Legend.

7. Change the maximum value of the “Frequency In” dial to 100. Double-click on the

maximum value and type 100 once the text is highlighted.

8. Set a default value for the “Frequency In” dial by setting the dial to the value you

would like, right-clicking the dial, and selecting Data Operations»Make Current

Value Default.

9. Run the VI and observe the signal on the waveform graph. If you cannot see the

signal, you may need to turn on auto-scaling for the x-axis. Right-click on the graph

and select X Scale»AutoScale X.

10. Change the frequency of the signal. Run the VI again so you can see a few periods

on the graph.

11. Manually measure the frequency and amplitude of the signal on the graph using

cursors. Right-click on the graph and select Visible Items »Cursor Legend to show

the cursor legend. To add a cursor on the graph, right-click on the cursor pane and

choose Create Cursor»Free. Once the cursors are displayed, you can drag them

around on the graph and their coordinates appear in the cursor legend.

12. Remember that the frequency of a signal is the reciprocal of its period (f = 1/T).

Does your measurement match the frequency and amplitude indicators from the

Tone Measurements VI?

13. Save your VI and close it.

Note: The solution to this exercise is printed in the back of this manual.

 End of Exercise 4 (Tracks A, B, and C)

Overview

Asof LabVIEW 8.6, you have new freedom to choose the most effective syntax for technical

computing, whether you are developing algorithms, exploring DSP concepts, or analyzing

results. You can instrument your scripts and develop algorithms on the block diagram by

interacting with popular third-party math tools such as The MathWorks, Inc. MATLAB®

software, Wolfram Mathematica, Maplesoft Maple, MathSoft Mathcad, ITT IDL, and NI

Xmath. Use of these math tools with LabVIEW is achieved in a variety of ways depending on

the vendor as listed below:

Native LabVIEW textual math node

LabVIEW MathScript Node, Formula Node

Communication with vendor software through LabVIEW node

Xmath node, MATLAB script Node, Maple* Node, IDL* Node

Communication with vendor software through VI Server

Mathematica* VIs, Mathcad* VIs

In LabVIEW, you can combine the intuitive LabVIEW graphical dataflow programming with

LabVIEW MathScript, a math-oriented textual programming language that is generally

compatible with popular .m file script language.

*LabVIEW module specific to the math tool must be installed.

The LabVIEW MathScript Node enhances LabVIEW by adding a native text-

based language for mathematical algorithm implementation in the graphical

programming environment. You can open and use the .m file scripts you’ve

written and saved from the LabVIEW MathScript window in the LabVIEW

MathScript Node. The .m file scripts you created in other math software generally

run as well. With LabVIEW MathScript you can pick the syntax you are most

comfortable with to solve the problem. You can instrument equations with the

LabVIEW MathScript Node for parameter exploration, simulation, or deployment

in a final application.

Exercise 5 – Apply What You Have Learned (Tracks A, B, and C)

In this exercise, create a VI that uses what you have learned. Design a VI

that does the following:

1. Acquires data from your device (or creates a simulated signal) and graphs it.

2. Filters that data using the Filter Express VI (Functions»Express»Signal Analysis»

Filter). There should be a front panel control for a user-configurable cutoff

frequency.

3. Takes a fast Fourier transform to get the frequency information from the filtered

data and graph the result. Use the Spectral Measurements Express VI (Functions»

Express»Signal Analysis»Spectral).

4. Finds the dominant frequency of the filtered data using the Tone Measurements

Express VI.

5. Compares that frequency to a user-inputted limit. If the frequency is over that limit,

light up an LED on the front panel. If you have a USB-6009, light up the LED on

your hardware using the DAQ Assistant. You need to invert the digital line for the

LED to light up when over the limit. You can specify this in the configuration

window of the DAQ Assistant or with a “not” Boolean function.

6. If you get stuck, open up the solution or view it at the end of this manual.

End of Exercise 5 (Tracks A, B, and C)

Clusters group like or unlike components together. They are equivalent to a record in

Pascal or a struct in ANSI C.

Cluster components may be of different data types.

Examples

• Error information – Grouping a Boolean error flag, a numeric error code, and an

error source string to specify the exact error.

• User information – Grouping a string indicating a user’s name and an ID number

specifying the user’s security code.

All elements of a cluster must be either controls or indicators. You cannot have a string

control and a Boolean indicator. Think of clusters as grouping individual wires (data

objects) together into a cable (cluster).

Create a cluster front panel object by choosing Cluster from the Controls»Modern»

Array, Matrix & Cluster palette.

• This option gives you a shell (similar to the array shell when creating arrays).

• You can size the cluster shell when you drop it.

• Right-click inside the shell and add objects of any type.

Note: You can even have a cluster inside of a cluster.

The cluster becomes a control or an indicator cluster based on the first object you place

inside the cluster.

You can also create a cluster constant on the block diagram by choosing Cluster

Constant from the Cluster palette.

• This gives you an empty cluster shell.

• You can size the cluster when you drop it.

• Put other constants inside the shell.

Note: You cannot place terminals for front panel objects in a cluster constant on the

block diagram, nor can you place “special” constants like the Tab or Empty String

constant within a block diagram cluster shell.

The terms bundle and cluster are closely related in LabVIEW.

Example: You use a bundle function to create a cluster. You use an unbundle function to

extract the parts of a cluster.

Bundle – Forms a cluster containing the given objects in the specified order.

Bundle by Name – Updates specific cluster object values (the object must have an

owned label).

Unbundle – Splits a cluster into each of its individual elements by data type.

Unbundle by Name – Returns the cluster elements whose names you specify.

Note: You must have an existing cluster wired into the middle terminal of the function

to use Bundle By Name.

The waveform data type carries the data, start time, and ∆t of a waveform. You can

create waveforms using the Build Waveform function. Many of the VIs and functions

you use to acquire or analyze waveforms accept and return the waveform data type by

default. When you wire a waveform data type to a waveform graph or chart, the graph

or chart automatically plots a waveform based on the data, start time, and ∆x of the

waveform. When you wire an array of waveform data types to a waveform graph or

chart, the graph or chart automatically plots all the waveforms.

Build Waveform

Builds a waveform or modifies an existing waveform

with the start time represented as an absolute timestamp.

Timestamps are accurate to real-world time and date and

are very useful for real-world data recording.

Bundle

Builds a waveform or modifies an existing waveform

with a relative timestamp. The input to t0 is a DBL. By

building waveforms using the bundle, you can plot data

on the negative x-axis (time).

Shift registers transfer data from one iteration to the next:

• Right-click on the left or right side of a For Loop or a While Loop and select Add Shift

Register.

• The right terminal stores data at the end of an iteration. Data appears at the left terminal at

the start of the next iteration.

• A shift register adapts to any data type wired into it.

An input of 0 would result in an output of 5 for the first iteration, 10 for the second iteration, and

15 for the third iteration. Said another way, you use shift registers to retain values from one

iteration to the next. They are valuable for many applications that have memory or feedback

between states. The feedback node (pictured below) is another representation of the same

concept. Both programs pictured behave the same.

See Help»Search the LabVIEW Help… for more information.

Sometimes you may need to access a front panel object from more than one place on the block

diagram or to pass data between structures that you cannot connect by a wire. To accomplish

these tasks, you would use a local variable.

Local variables are located on the Functions palette under Programming»Structures.

When you place a local variable on the diagram, it contains by default the name (owned label) of

the first object you placed on the front panel.

You use a local variable by first selecting the object you want to access. You can either click on

the local variable with the Operating tool and select the object you want to access, or right-click

on the local variable and choose the object from the Select Item menu.

Next, you must decide to either read or write to the object. Right-click on the local variable and

choose Change to Read or Change to Write.

Select View»Show Navigation Window to display this window.

Use the window to navigate large front panels or block diagrams. Click an area of the

image in the Navigation Window to display that area in the front panel or block

diagram window. You also can click and drag the image in the Navigation Window to

scroll through the front panel or block diagram.

lvhelp.chm::/Using_Navigation_Window.html

LabVIEW Project

Use projects to group together LabVIEW and other files, create build specifications, and

deploy or download files to targets. A target is a device or machine on which a VI runs.

When you save a project, LabVIEW creates a project file (.lvproj), which includes

configuration information, build information, deployment information, references to

files in the project, and so on.

You must use a project to build stand-alone applications and shared libraries. You also

must use a project to work with a real-time, FPGA, or PDA target. Refer to the specific

module documentation for more information about using projects with the LabVIEW

Real-Time, LabVIEW FPGA, and LabVIEW Mobile modules.

Project-style LabVIEW Plug and Play instrument drivers use the project and project

library features in LabVIEW 8.0. You can use project-style drivers in the same way as

previous LabVIEW Plug and Play drivers.

Project Explorer Window

Use the Project Explorer window to create and edit projects. Select File»New Project to

display the Project Explorer window. You also can select Project»New Project or

select File»New and then select Empty Project in the New dialog box to display the

Project Explorer window.

This LabVIEW VI allows two human players to play chess. Using several custom

controls and many of the LabVIEW constructs that you’ve worked with in this manual,

the VI determines legitimate moves and displays the game in real time. The block

diagram shown in the above slide handles the high-level management of the subVIs and

acts as the user interface. The block diagram shown below is used to reset the board.

Using the code shown in the block diagram below, this LabVIEW VI calculates a

projectile’s ballistic trajectory based on the fundamental kinematic equations. Note the

use of decision making using case structures and the modularity provided by the three

subVIs.

This VI uses several more advanced LabVIEW functions to calculate the position of

your mouse cursor on the monitor. The VI uses two key elements. The first, event

structures, are like case structures, but they are triggered from events instead of front

panel elements. These events can include moving or clicking the mouse, using the

keyboard, and many, many others. The other element that the VI uses are property

nodes. With property nodes, you can read or set many properties of various VI elements

and elements of the system. These are just some of the many powerful tools in

LabVIEW that remain for you to discover.

Today, more and more companies and hiring managers are looking for LabVIEW expertise

when they evaluate job candidates. The LabVIEW Certification Program is built on a series of

professional exams. LabVIEW certifications are used to validate LabVIEW expertise and skills

for employment opportunities and for project bids.

The Certified LabVIEW Associate Developer is the first step for LabVIEW certification and it

demonstrates a strong foundation in using LabVIEW and the LabVIEW environment. As a

student, your Certified LabVIEW Associate Developer certification differentiates your

LabVIEW skills for employment opportunities and helps potential employers recognize your

LabVIEW expertise. The CLAD is a one-hour multiple-choice exam conducted at Pearson VUE

testing centers around the country. The exam covers multiple topics on the LabVIEW

environment including dataflow concepts, programming structures, advanced file I/O techniques,

modular programming practices, VI object properties, and control references.

Thinking about getting your CLAD certification? Take the free online LabVIEW Fundamentals

Exam as a sample test.

The Certified LabVIEW Developer and Architect professional certifications validate advanced

LabVIEW knowledge and application development experience. Additionally, the Architect

certification also demonstrates skills in leading project teams and large application development

experience. These four-hour practical exams are conducted by National Instruments.

The NI LabVIEW Academy provides classroom curriculum and hands-on exercises to colleges

and universities. After completion of the LabVIEW Academy program, students have the

knowledge and tools to attempt the Certified LabVIEW Associate Developer certification exam

with confidence.

Solutions

Exercise 2 Track A

Exercise 2 Track C

Exercise 2 Track B

Exercise 3.1 Track A, B, and C

Exercise 3.2 Track A

Exercise 3.2 Track B

Exercise 3.2 Track C

Exercise 3.2 Track A

Exercise 3.2 Track B

Exercise 3.2 Track C

Exercise 4 Track A, B, and C

Exercise 5 Track A

Exercise 5 Track B

Exercise 5 Track C

