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Why Test Systems Are Extremely Important?



Test System Depends On Product Phase



Main Factors At The Time To Plan A Test System



Key Areas When Develop A Test System



Collecting The Test Requirements And Defining 

The Project Scope Is Really Important!!!.

 



Total Cost of Ownership(TCO) an ATE (Automated 

Test System).

 



Hardware Considerations 

& 

Best Practices



Selecting Instrumentation

 “pick the right tool for the job.”

DC AND POWER LOW-SPEED ANALOG HIGH-SPEED ANALOG RF AND WIRELESS

Input, Measure Digital Multimeter Analog Input, Data 

Acquisition (DAQ) 

Oscilloscope, Frequency 

Counter

RF Analyzer Power Meter 

(Spectrum Analyzer, Vector 
Signal, Analyzer)

Output, Generate Programmable Power 

Supply

Analog Output Function/Arbitrary Waveform 

Generator (FGEN, AWG)

RF Signal Generator (Vector 

Signal Generator, CW Source)

Input and Output On The 

Same Device

DC Power Analyzer Multifunction Data 

Acquisition (DAQ)

All-in-One Oscilloscope Vector Signal Transceiver (VST)

Input and Output On The 

Same Pin

Source Measure Unit 

(SMU)

LCR Meter Impedance Analyzer Vector Network Analyzer (VNA)

• Highly recommended to select devices with good longevity in the market, this minimize the risk to have problems for maintenance and get spare parts.

Analog Instruments Categories



Selecting Instrumentation

 “pick the right tool for the job.”

• Highly recommended to select devices with good longevity in the market, this minimize the risk to have problems for maintenance and get spare parts.

STATIC, LOW SPEED SYNCHRONOUS AND HIGH-

SPEED PARALLEL (100 
MBITS/S RANGE) 

HIGH-SPEED SERIAL (10 

GBITS/S RANGE)

Interface (Standard) Low-Speed Standard Interface Card (I2C, C) Synchronous 

Protocol Interface (ARINC 429, CAN, GPIB, I2C, SPI)

Interface Card (10 Gigabit 

Ethernet, Fiber Channel, PCI 
Express, and so on)

Interface (Custom) Digital I/O (GPIO) Digital Waveform Generator/ 

Analyzer, Pattern Generator

FPGA-Based High-Speed 

Serial Interface Aurora, Serial 
Rapid I/O, JESD204b/c

Electrical Test And Timing Test 

(Basic Interface)

Pin Electronics Digital, Per-Pin Parametric Measurement Unit 

(PPMU)

BERT, Oscilloscope

Digital Instruments Categories



BANDWIDTH

(MBYTES/S) 

LATENCY (μS) RANGE (M)

(WITHOUT 
EXTENDERS)

SETUP AND 

INSTALLATION

CONNECTOR 

RUGGEDNESS

GPIB 1.8 (488.1) 

8 (HS488) 

30 20 Good Best

USB 60 (USB 2.0)

640 (USB 3.0)

Analog Output 5 Best Good

PCI (PXI) 132 0.7 Internal PC Bus Better Better Best (for PXI)

PCI Express & PXI 

Express

250 (x1) 

4,000 (x16)

0.7 (x1) 

0.7 (x4)

Internal PC Bus Better Better Best (for PXI)

Ethernet/LAN/LXI 12.5 (Fast) 

125 (Gigabit)

1,000 (Fast) 

1,000 (Gigabit)

100 m Good Good

Selecting Instrumentation

 “pick the right tool for the job.”

The Size Matters!



Automated Test System Power Infrastructure



Automated Test System Power Infrastructure
 Power Budget

Equipment

Maximum Power 

Consumption

Average Power 

Utilization Current at 110 V

PDU 1 

Fans 50 W 35 W 0.03 A

HMI 100 W 70 W 0.06 A

Ethernet Switch 25 W 17.5 W 0.02 A

Overtemp Monitor 10 W 7 W 0.01 A

PXI System 526.9 W 369 W 3.4 A

DUT Control Pumps 1,000 W 700 W 6.4 A

PDU 1 Total - 1,198.5 W 11.0 A

PDU 2 VirtualBench 150 W 105 W 1.0 A

750 W Power Supply 1,100 W 770 W 7.0 A

PDU 2 Total - 875 W 8.0 A

System Total - 2,073.5 W 19.0 A

1. Base your system power requirements on about 60 to 70 percent of the maximum required power of each component

2. Add about 20 percent to the final power calculation from rule one as a safety buffer to account for high-activity periods and any necessary future expansion of the test system.
3. Remember that some items connect through PDUs and UPSs, so there are power subsystems within the larger system.



Automated Test System Power Infrastructure
Power Budget

From→ PXIe-8880 Electrical Specifications

Voltage Rail (V) Current (Amps) Typical Current (Amps) Maximum

5 VAUX 0.95 W 1.15 W

+12 V 78 W 104.4 W

+5 V 12.2 W 15.55 W

+3.3 V 7.4 W 9.8 W

From→ PXIe-1095 Electrical Specifications

Voltage Rail
Maximum Current, 

Single Power Supply

Maximum Current, 

Dual Power Supplies

+5V_AUX 21 W 21 w

+12 V 900 W 1464 W

+5 V 107.5 W 107.5 W

+3.3 V 198 W 198 W

-12 V 15.6 W 15.6 W

PXIe-1095



Automated Test System Power Infrastructure

Check 

List

Item

Power grid voltage standard and configuration 

Power grid quality and reliability 

Materials compliance like RoHS 

Energy compliance like CE, PSE, or KC 

Trade compliance and import/export 

regulations



Automated Test System Power Infrastructure

Best Practices For Components

Consider younger devices on the 

market where the EOL is not 

nearby.

Sourcing commercially available 

components from an established 

vendor is a longer-term strategy 

rather than creating custom parts.

Working closely with a vendor 

would allow you to identify 

direct replacements for EOL 

devices, as well as new 

products on the pipeline. 

It is a best practice to consider 

standard components rather 

than creating custom parts.

Design and plan your 

system for future 

expansion.



Rack Layout and Thermal Profiling

System Layout Instrument 

Blocking Airflow

System Layout Instrument 

Proper Airflow

PXIe Chassis Cooling System



Switching and Multiplexing

No Switching

Switching In Test Rack Only Switching In Test Rack & Fixture

Switching In Fixture Only



Switching and Multiplexing

FLEXIBILITY THROUGHPUT COST LOW-LEVEL MEASUREMENTS (MV, μA, MΩ)

No Switching

Switching in Test Rack

Switching in Test 
Fixture

Switching in Test Rack 
and Fixture

Below AboveAverage



Switching and Multiplexing

Selecting The Right Relay Option For Our Test Solution Is 

Crucial”

CAPABILITY Electromechanical 

Relay (EMR)

Reed Relay Field-Effect 

Transistor (FET)

Solid State 

Relay(SSR)

High Power

High Speed

Small Package Size

Low Path Resistance

Low Voltage Offset

Extended Lifetime

Below AboveAverage



Mass Interconnect and Fixturing



Mass Interconnect and Fixturing



Hardware Considerations To Build a Fixture

ABSTRACTION OPTION CABLES MASS INTERCONNECT WITH 

CABLES

MASS INTERCONNECT WITH 

PCBS OR FLEX CIRCUITS

Frequent Changeover Between DUTs

Optimized For Design And Characterization

Optimized For Verification And Validation (V&V)

Optimized For Test Production

Signal Quality

Continuity of Performance (system to system)

Ease of System Maintenance And Upgradability

System Reconfiguration (that is, scalability)

Ease of Duplication (for example, global deployments)

Instrument To Module Pin Efficiency

Repairability In The Field

Instrument Card Rev. Control Tolerance

Below AboveAverage



System Maintenance
DESIGN 

GUIDELINES

PREDICTIVE PREVENTIVE CORRECTIVE

Self-Test and 

Monitoring

• Condition monitoring

• Verifying functionality

• Verifying functionality • Detecting failures

• Diagnosing and localizing failures
• Verifying functionality

Modular Design

• Condition monitoring 

• Servicing 
• Replacing 
• Calibrating 

• Verifying functionality

• Servicing 

• Replacing 
• Calibrating 
• Verifying functionality

• Detecting failures

• Diagnosing and localizing failures 
• Repairing 
• Verifying functionality

Standardization

• Condition monitoring

• Servicing 
• Replacing 
• Calibrating 

• Verifying functionality Improving 
consistency of work

• Servicing 

• Replacing 
• Calibrating 
• Verifying functionality

• Improving consistency of work

• Detecting failures

• Diagnosing and localizing failures 
• Repairing 
• Verifying functionality 

• Improving consistency of work

Simplicity

• Lowering documentation and training 

costs 
• Improving consistency of work

• Lowering documentation and training 

costs
• Improving consistency of work

• Lowering documentation and training 

costs
• Improving consistency of work

Environment and 

Human Factors

• Lowering frequency of predictive 

maintenance events
• Reducing human errors Improving 

safety

• Lowering frequency of preventive 

maintenance events
• Reducing human errors
• Improving safety

• Lowering failure rates and

• Reducing human errors
• Improving safety



Software Considerations 

& 

Case Studies



▪ Multiple validation labs within a global semiconductor company are using their workbenches to 

automate their manual validation.

▪ This company recently switched from a DIY solution that each validation lab implemented, normally 

by a single person that took the initiative, to the use of TestStand as a company-enforced test 

executive.

▪ Now, all validation labs have a centralized location where all sequences can be accessed, which 

are maintained by a team of 200+ validation engineers spread across multiple facilities.

▪ This new approach of using TestStand as a standard for automation has greatly increased 

profitability due to the number of devices under test that can be passed through the test sequence, 

allowing management to schedule more projects due to the increased bandwidth.

▪ As time goes by… product increases in complexity. Management is now having to push back again 

on validating new silicon due to issues on replicating validation results across multiple labs, as well 

as not being able to validate parts fast enough.

Case Study 1: Global validation lab



1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues 

reactively. “If it works… don’t touch it!”.  

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number 

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made 

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy. 

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI 

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab



▪ An automation expert has been brought into the company. Upper management then gave him full control on 

defining a company-wide approach for automation across all sites.

Coupling and technical debt

▪ After careful evaluation, an initiative was created that would roll out on 2 stages.

▪ Challenging the status quo. “This is how we have always done it” is no longer a valid 

phrase.

▪ A mechanism to automate enforcing best practices is embedded into source 

code control. 

STAGE 1

STAGE 2

▪ Identifying areas to define trainings and a mentoring program to help validation 

engineers ramp up on TestStand.

▪ Have the multiple managers from the multiple validation labs align on this plan and 

understand individual needs that each site has.

▪ Now, if a developer does not adhere to a rule, it is automatically rejected by 

the global repo.

▪ All reuse code is then modified to adhere to these best practices, following an 

established workflow using source code control. 



1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues 

reactively. “If it works… don’t touch it!”.  

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number 

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made 

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy. 

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI 

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab



Result collection strategy

• NI SystemLink enterprise was chosen for result collection due to the company wide access to results 

that this product would bring.

• Enabling this result processing plugin on TestStand would automatically post results to the network, no 

changes to sequences are necessary if the sequence is designed to use a results processing plugin.



Device utilization and calibration forecasting



Asset tracking



Accessibility to results



Network independent result collection

▪ “Test Monitor Client” has a service called “Store and forward”.



No more “babysitting” parts…

▪ Very busy product experts were unable to delegate running multiple parts to technicians, due to the room 

for mistake when typing in a part number or selecting the wrong sequence.

▪ A modified version of the TestStand sequential process model was created that automated reading the 

part number via JTAG. No more manual typing.

▪ Additionally, a new feature was added that sent the status of the test to a mobile device. This way the very 

busy product expert is able to track multiple technicians running parts on multiple benches across multiple 

labs.



1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues 

reactively. “If it works… don’t touch it!”.  

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number 

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made 

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy. 

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI 

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab



Employ Abstraction Layers to Mitigate Risk

iviDCPwr

Code ModulesUUT Test Code

DC Voltage and Current Measurement

SMU Measure DMM Measure



Hardware Abstraction Layer (HAL)

Developer

Power Supply DMM

PXI-4110 Keysight N6700 PXI-4065 Simulated DMM

Read Voltage

Take DMM 

Voltage 
Measurement

HAL

Top-level 

application NI DMM specific 

calls
“Measure DUT 

Voltage””

▪ Identify common functionality.

▪ What are the functions of a DMM?

▪ What are the functions of a power 

supply?



 

 

Measurement Abstraction Layer (MAL)

Read Voltage

Take DMM 

Voltage 
Measurement

MAL HAL

Top-level 

application
NI DMM & NI 

Switch driver-
specific calls“Measure DUT 

Voltage””



 

 

How do the HAL / MAL fit together?

MAL

HAL DMM

HP 34401 Specific Driver Fluke 45 Specific Driver

Read Voltage

VI



1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues 

reactively. “If it works… don’t touch it!”.  

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number 

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made 

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy. 

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI 

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab



Source code control(SCC)

The Turing Way Community. This illustration is created by Scriberia with The Turing Way community, used under a CC-BY 4.0 licence. DOI: 10.5281/zenodo.3332807

▪ Code traceability

▪ Long term efficiency increase

▪ Simplifies collaboration and workload distribution



Git hooks and unit testing

▪ Unit testing is a tool for automating testing your source code against a specific condition.

▪ Unit testing was added to source code control. If your code fails the unit test, you can't commit until you 

pass it.

▪ In this case, ONE simple unit test made collaboration seamless: IS THERE A BROKEN ARROW?

▪ More tests were added later, that enforced good practices by adding VI Analyzer test with specific good 

practices that want to be enforced on the source code.

▪ This approach comes with its risks: 

- Too much unit testing would make committing a new feature very restrictive, adding overhead. 

- Not enough unit testing would give the false impression that you didn’t broke any rules.

But, when properly defined, this allows for architects to enforce project rules without having to make code 

review for each of the commits.

Bad code that gets committed… stays bad. - Chris Roebuck



1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues 

reactively. “If it works… don’t touch it!”.  

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number 

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made 

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy. 

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI 

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab



Deployment

NI Package Builder

DLL

EXE

ZIP LVBITX

LVLIBP

Installer

Source

Distribution

VI

Package

Installer



Deployment



1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues 

reactively. “If it works… don’t touch it!”.  

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number 

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made 

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy. 

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI 

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab



Error handling strategy

▪ Things happen such as error codes, timeouts, infinite loops. There is no utopia and it i should be 

expected that errors will occur.

▪ In this case, we needed assurances that if an error occurs, there would be a mechanism to protect 

critical components of the system.

▪ By making use of the already existing deployment infrastructure made on previous stage of this project, 

we were able to deploy TestStand files that are components of the custom sequential process model.

▪ This validation lab no longer has validation boards that are one of a kind, soaked in water due to an 

instrument that injects cold air being left on since it had the misfortune of an error happening in the 

middle of injecting cold air.



Which framework is the best?

Actor Framework



Lidar PCBA Test system

Challenge : 1 .- Multiple Board Testing  +  2.- Different Final Customer Customization 

Case Study



Development Environment

Case Study

Run-Time Environment

NI LabVIEW

Product Configuration Interface
NI LabVIEW

Maintenance Interface

NI TestStand

Sequence Deployment

NI LabVIEW

Object Oriented Programming

NI LabVIEW

User Interface

Software Architecture
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