

Optimizing Test System

Development: Best

Practices Unveiled

• Raul Galvez

• Sergio Velderrain

– Mechatronic engineer with 12 years of experience designing solutions using NI software. Former employee of multiple

NI partners (Cygnus, Averna, and Konrad). LabVIEW Champion before joining National Instruments and a Certified

LabVIEW and TestStand architect. ADAS subject matter expert and founding member of the first ADAS datalogging

team for Konrad Germany. Currently part of NI as a Senior Field Applications Engineer for automotive customers in the

northern California area.

– 16-year veteran in the test automation industry specializing in the design, development, and deployment of automated

test systems (ATE’s) for various types of customers across multiple countries. Certified LabVIEW and TestStand

architect as well as a python practitioner with more than a decade mentoring customers and peers ranging from

architects to developers. Former employee of Sanmina-SCI (Contract manufacturer), Averna (NI alliance Partner), and

currently part of National Instruments (NI) as a Chief Solutions Engineer.

• Adolfo Islas
– Electronic Engineer/MBA with 11 Years of Experience as a test system integrator and Reckon Solution commercial

manager. Designed and deployed projects for multiple industries ranging from automotive, consumer electronics and

telecommunications in Mexico, Canada, USA, Argentina and Brazil. Passionate LabVIEW and TestStand developer

currently contributing to the NI community with LabVIEW user groups over social media with over 6.5K users. Content

creator and streamer of Developing LabVIEW practices in Twitch and Facebook Live.

• Introduction

• Importance of Test System Optimization

• Consideration & Best Practices

• Project Management

• Hardware

• Software

• Case Studies

• Global validation team

• Reckon Lidar ATE

• Conclusion

• Q&A

AGENDA

Why Test Systems Are Extremely Important?

Test System Depends On Product Phase

Main Factors At The Time To Plan A Test System

Key Areas When Develop A Test System

Collecting The Test Requirements And Defining

The Project Scope Is Really Important!!!.

Total Cost of Ownership(TCO) an ATE (Automated

Test System).

Hardware Considerations

&

Best Practices

Selecting Instrumentation

 “pick the right tool for the job.”

DC AND POWER LOW-SPEED ANALOG HIGH-SPEED ANALOG RF AND WIRELESS

Input, Measure Digital Multimeter Analog Input, Data

Acquisition (DAQ)

Oscilloscope, Frequency

Counter

RF Analyzer Power Meter

(Spectrum Analyzer, Vector
Signal, Analyzer)

Output, Generate Programmable Power

Supply

Analog Output Function/Arbitrary Waveform

Generator (FGEN, AWG)

RF Signal Generator (Vector

Signal Generator, CW Source)

Input and Output On The

Same Device

DC Power Analyzer Multifunction Data

Acquisition (DAQ)

All-in-One Oscilloscope Vector Signal Transceiver (VST)

Input and Output On The

Same Pin

Source Measure Unit

(SMU)

LCR Meter Impedance Analyzer Vector Network Analyzer (VNA)

• Highly recommended to select devices with good longevity in the market, this minimize the risk to have problems for maintenance and get spare parts.

Analog Instruments Categories

Selecting Instrumentation

 “pick the right tool for the job.”

• Highly recommended to select devices with good longevity in the market, this minimize the risk to have problems for maintenance and get spare parts.

STATIC, LOW SPEED SYNCHRONOUS AND HIGH-

SPEED PARALLEL (100
MBITS/S RANGE)

HIGH-SPEED SERIAL (10

GBITS/S RANGE)

Interface (Standard) Low-Speed Standard Interface Card (I2C, C) Synchronous

Protocol Interface (ARINC 429, CAN, GPIB, I2C, SPI)

Interface Card (10 Gigabit

Ethernet, Fiber Channel, PCI
Express, and so on)

Interface (Custom) Digital I/O (GPIO) Digital Waveform Generator/

Analyzer, Pattern Generator

FPGA-Based High-Speed

Serial Interface Aurora, Serial
Rapid I/O, JESD204b/c

Electrical Test And Timing Test

(Basic Interface)

Pin Electronics Digital, Per-Pin Parametric Measurement Unit

(PPMU)

BERT, Oscilloscope

Digital Instruments Categories

BANDWIDTH

(MBYTES/S)

LATENCY (μS) RANGE (M)

(WITHOUT
EXTENDERS)

SETUP AND

INSTALLATION

CONNECTOR

RUGGEDNESS

GPIB 1.8 (488.1)

8 (HS488)

30 20 Good Best

USB 60 (USB 2.0)

640 (USB 3.0)

Analog Output 5 Best Good

PCI (PXI) 132 0.7 Internal PC Bus Better Better Best (for PXI)

PCI Express & PXI

Express

250 (x1)

4,000 (x16)

0.7 (x1)

0.7 (x4)

Internal PC Bus Better Better Best (for PXI)

Ethernet/LAN/LXI 12.5 (Fast)

125 (Gigabit)

1,000 (Fast)

1,000 (Gigabit)

100 m Good Good

Selecting Instrumentation

 “pick the right tool for the job.”

The Size Matters!

Automated Test System Power Infrastructure

Automated Test System Power Infrastructure
 Power Budget

Equipment

Maximum Power

Consumption

Average Power

Utilization Current at 110 V

PDU 1

Fans 50 W 35 W 0.03 A

HMI 100 W 70 W 0.06 A

Ethernet Switch 25 W 17.5 W 0.02 A

Overtemp Monitor 10 W 7 W 0.01 A

PXI System 526.9 W 369 W 3.4 A

DUT Control Pumps 1,000 W 700 W 6.4 A

PDU 1 Total - 1,198.5 W 11.0 A

PDU 2 VirtualBench 150 W 105 W 1.0 A

750 W Power Supply 1,100 W 770 W 7.0 A

PDU 2 Total - 875 W 8.0 A

System Total - 2,073.5 W 19.0 A

1. Base your system power requirements on about 60 to 70 percent of the maximum required power of each component

2. Add about 20 percent to the final power calculation from rule one as a safety buffer to account for high-activity periods and any necessary future expansion of the test system.
3. Remember that some items connect through PDUs and UPSs, so there are power subsystems within the larger system.

Automated Test System Power Infrastructure
Power Budget

From→ PXIe-8880 Electrical Specifications

Voltage Rail (V) Current (Amps) Typical Current (Amps) Maximum

5 VAUX 0.95 W 1.15 W

+12 V 78 W 104.4 W

+5 V 12.2 W 15.55 W

+3.3 V 7.4 W 9.8 W

From→ PXIe-1095 Electrical Specifications

Voltage Rail
Maximum Current,

Single Power Supply

Maximum Current,

Dual Power Supplies

+5V_AUX 21 W 21 w

+12 V 900 W 1464 W

+5 V 107.5 W 107.5 W

+3.3 V 198 W 198 W

-12 V 15.6 W 15.6 W

PXIe-1095

Automated Test System Power Infrastructure

Check

List

Item

Power grid voltage standard and configuration

Power grid quality and reliability

Materials compliance like RoHS

Energy compliance like CE, PSE, or KC

Trade compliance and import/export

regulations

Automated Test System Power Infrastructure

Best Practices For Components

Consider younger devices on the

market where the EOL is not

nearby.

Sourcing commercially available

components from an established

vendor is a longer-term strategy

rather than creating custom parts.

Working closely with a vendor

would allow you to identify

direct replacements for EOL

devices, as well as new

products on the pipeline.

It is a best practice to consider

standard components rather

than creating custom parts.

Design and plan your

system for future

expansion.

Rack Layout and Thermal Profiling

System Layout Instrument

Blocking Airflow

System Layout Instrument

Proper Airflow

PXIe Chassis Cooling System

Switching and Multiplexing

No Switching

Switching In Test Rack Only Switching In Test Rack & Fixture

Switching In Fixture Only

Switching and Multiplexing

FLEXIBILITY THROUGHPUT COST LOW-LEVEL MEASUREMENTS (MV, μA, MΩ)

No Switching

Switching in Test Rack

Switching in Test
Fixture

Switching in Test Rack
and Fixture

Below AboveAverage

Switching and Multiplexing

Selecting The Right Relay Option For Our Test Solution Is

Crucial”

CAPABILITY Electromechanical

Relay (EMR)

Reed Relay Field-Effect

Transistor (FET)

Solid State

Relay(SSR)

High Power

High Speed

Small Package Size

Low Path Resistance

Low Voltage Offset

Extended Lifetime

Below AboveAverage

Mass Interconnect and Fixturing

Mass Interconnect and Fixturing

Hardware Considerations To Build a Fixture

ABSTRACTION OPTION CABLES MASS INTERCONNECT WITH

CABLES

MASS INTERCONNECT WITH

PCBS OR FLEX CIRCUITS

Frequent Changeover Between DUTs

Optimized For Design And Characterization

Optimized For Verification And Validation (V&V)

Optimized For Test Production

Signal Quality

Continuity of Performance (system to system)

Ease of System Maintenance And Upgradability

System Reconfiguration (that is, scalability)

Ease of Duplication (for example, global deployments)

Instrument To Module Pin Efficiency

Repairability In The Field

Instrument Card Rev. Control Tolerance

Below AboveAverage

System Maintenance
DESIGN

GUIDELINES

PREDICTIVE PREVENTIVE CORRECTIVE

Self-Test and

Monitoring

• Condition monitoring

• Verifying functionality

• Verifying functionality • Detecting failures

• Diagnosing and localizing failures
• Verifying functionality

Modular Design

• Condition monitoring

• Servicing
• Replacing
• Calibrating

• Verifying functionality

• Servicing

• Replacing
• Calibrating
• Verifying functionality

• Detecting failures

• Diagnosing and localizing failures
• Repairing
• Verifying functionality

Standardization

• Condition monitoring

• Servicing
• Replacing
• Calibrating

• Verifying functionality Improving
consistency of work

• Servicing

• Replacing
• Calibrating
• Verifying functionality

• Improving consistency of work

• Detecting failures

• Diagnosing and localizing failures
• Repairing
• Verifying functionality

• Improving consistency of work

Simplicity

• Lowering documentation and training

costs
• Improving consistency of work

• Lowering documentation and training

costs
• Improving consistency of work

• Lowering documentation and training

costs
• Improving consistency of work

Environment and

Human Factors

• Lowering frequency of predictive

maintenance events
• Reducing human errors Improving

safety

• Lowering frequency of preventive

maintenance events
• Reducing human errors
• Improving safety

• Lowering failure rates and

• Reducing human errors
• Improving safety

Software Considerations

&

Case Studies

▪ Multiple validation labs within a global semiconductor company are using their workbenches to

automate their manual validation.

▪ This company recently switched from a DIY solution that each validation lab implemented, normally

by a single person that took the initiative, to the use of TestStand as a company-enforced test

executive.

▪ Now, all validation labs have a centralized location where all sequences can be accessed, which

are maintained by a team of 200+ validation engineers spread across multiple facilities.

▪ This new approach of using TestStand as a standard for automation has greatly increased

profitability due to the number of devices under test that can be passed through the test sequence,

allowing management to schedule more projects due to the increased bandwidth.

▪ As time goes by… product increases in complexity. Management is now having to push back again

on validating new silicon due to issues on replicating validation results across multiple labs, as well

as not being able to validate parts fast enough.

Case Study 1: Global validation lab

1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues

reactively. “If it works… don’t touch it!”.

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy.

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab

▪ An automation expert has been brought into the company. Upper management then gave him full control on

defining a company-wide approach for automation across all sites.

Coupling and technical debt

▪ After careful evaluation, an initiative was created that would roll out on 2 stages.

▪ Challenging the status quo. “This is how we have always done it” is no longer a valid

phrase.

▪ A mechanism to automate enforcing best practices is embedded into source

code control.

STAGE 1

STAGE 2

▪ Identifying areas to define trainings and a mentoring program to help validation

engineers ramp up on TestStand.

▪ Have the multiple managers from the multiple validation labs align on this plan and

understand individual needs that each site has.

▪ Now, if a developer does not adhere to a rule, it is automatically rejected by

the global repo.

▪ All reuse code is then modified to adhere to these best practices, following an

established workflow using source code control.

1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues

reactively. “If it works… don’t touch it!”.

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy.

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab

Result collection strategy

• NI SystemLink enterprise was chosen for result collection due to the company wide access to results

that this product would bring.

• Enabling this result processing plugin on TestStand would automatically post results to the network, no

changes to sequences are necessary if the sequence is designed to use a results processing plugin.

Device utilization and calibration forecasting

Asset tracking

Accessibility to results

Network independent result collection

▪ “Test Monitor Client” has a service called “Store and forward”.

No more “babysitting” parts…

▪ Very busy product experts were unable to delegate running multiple parts to technicians, due to the room

for mistake when typing in a part number or selecting the wrong sequence.

▪ A modified version of the TestStand sequential process model was created that automated reading the

part number via JTAG. No more manual typing.

▪ Additionally, a new feature was added that sent the status of the test to a mobile device. This way the very

busy product expert is able to track multiple technicians running parts on multiple benches across multiple

labs.

1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues

reactively. “If it works… don’t touch it!”.

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy.

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab

Employ Abstraction Layers to Mitigate Risk

iviDCPwr

Code ModulesUUT Test Code

DC Voltage and Current Measurement

SMU Measure DMM Measure

Hardware Abstraction Layer (HAL)

Developer

Power Supply DMM

PXI-4110 Keysight N6700 PXI-4065 Simulated DMM

Read Voltage

Take DMM

Voltage
Measurement

HAL

Top-level

application NI DMM specific

calls
“Measure DUT

Voltage””

▪ Identify common functionality.

▪ What are the functions of a DMM?

▪ What are the functions of a power

supply?

Measurement Abstraction Layer (MAL)

Read Voltage

Take DMM

Voltage
Measurement

MAL HAL

Top-level

application
NI DMM & NI

Switch driver-
specific calls“Measure DUT

Voltage””

How do the HAL / MAL fit together?

MAL

HAL DMM

HP 34401 Specific Driver Fluke 45 Specific Driver

Read Voltage

VI

1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues

reactively. “If it works… don’t touch it!”.

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy.

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab

Source code control(SCC)

The Turing Way Community. This illustration is created by Scriberia with The Turing Way community, used under a CC-BY 4.0 licence. DOI: 10.5281/zenodo.3332807

▪ Code traceability

▪ Long term efficiency increase

▪ Simplifies collaboration and workload distribution

Git hooks and unit testing

▪ Unit testing is a tool for automating testing your source code against a specific condition.

▪ Unit testing was added to source code control. If your code fails the unit test, you can't commit until you

pass it.

▪ In this case, ONE simple unit test made collaboration seamless: IS THERE A BROKEN ARROW?

▪ More tests were added later, that enforced good practices by adding VI Analyzer test with specific good

practices that want to be enforced on the source code.

▪ This approach comes with its risks:

- Too much unit testing would make committing a new feature very restrictive, adding overhead.

- Not enough unit testing would give the false impression that you didn’t broke any rules.

But, when properly defined, this allows for architects to enforce project rules without having to make code

review for each of the commits.

Bad code that gets committed… stays bad. - Chris Roebuck

1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues

reactively. “If it works… don’t touch it!”.

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy.

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab

Deployment

NI Package Builder

DLL

EXE

ZIP LVBITX

LVLIBP

Installer

Source

Distribution

VI

Package

Installer

Deployment

1.- Coupling and technical debt

Validation engineers take the faster path to solve a problem due to an unofficial company wide approach of solving issues

reactively. “If it works… don’t touch it!”.

2.- Not having a standardized way of collecting results

Result collection is implemented differently across sites, results are then shared by attaching them to an email. Serial number

of the DUT must be manually typed at the beginning of a test.

3.- Lack of Hardware Abstraction

When trying to replicate results at a different validation lab, the test sequence now needs to be rewritten since it was made

around a specific instrument not available at that specific validation lab.

4.- No strategy when using source code control

Source code is used as a “file share” only, there is no way of knowing if a remote has a working copy.

5.- Not making use of commercially available deployment tools

It is known that setting up a workstation can only be made by the validation engineer who has learned the most about NI

Software, which are no more than a couple per site.

6.- Not having a standardized error handling strategy

Test sequences are constantly stopping the test due to mistakes that were made by the developer.

Case Study 1: Global validation lab

Error handling strategy

▪ Things happen such as error codes, timeouts, infinite loops. There is no utopia and it i should be

expected that errors will occur.

▪ In this case, we needed assurances that if an error occurs, there would be a mechanism to protect

critical components of the system.

▪ By making use of the already existing deployment infrastructure made on previous stage of this project,

we were able to deploy TestStand files that are components of the custom sequential process model.

▪ This validation lab no longer has validation boards that are one of a kind, soaked in water due to an

instrument that injects cold air being left on since it had the misfortune of an error happening in the

middle of injecting cold air.

Which framework is the best?

Actor Framework

Lidar PCBA Test system

Challenge : 1 .- Multiple Board Testing + 2.- Different Final Customer Customization

Case Study

Development Environment

Case Study

Run-Time Environment

NI LabVIEW

Product Configuration Interface
NI LabVIEW

Maintenance Interface

NI TestStand

Sequence Deployment

NI LabVIEW

Object Oriented Programming

NI LabVIEW

User Interface

Software Architecture

	Connect Title + Divider Slides
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

	Case study 1: Test lab
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

	Sample Content Slides
	Slide 54
	Slide 55
	Slide 56

