

Demystifying gRPC

A dive into the mysterious engine behind

InstrumentStudio Measurement Plug-Ins

• Overview of gRPC

• Uses of gRPC at NI

• InstrumentStudio Measurement Plug-Ins

Agenda

History of gRPC

• Created by Google

• Released in 2016

• Replacement of Stubby

• Performant server-to-server

communication

RPC

Remote

Procedure

Call

'g'

• 1.50 'g' stands for 'galley'

• 1.51 'g' stands for 'galaxy'

• 1.52 'g' stands for 'gribkoff'

• 1.53 'g' stands for 'glockenspiel'

• 1.54 'g' stands for 'gracious'

• 1.55 'g' stands for 'grandslam'

• 1.56 'g' stands for 'galvanized'

• 1.57 'g' stands for 'grounded'

• 1.58 'g' stands for 'goku'

• 1.59 'g' stands for 'generative'

• 1.60 'g' stands for 'gjallarhorn'

• 1.61 'g' stands for 'grand'

• 1.62 'g' stands for 'guardian'

'g' in gRPC

• 1.0 'g' stands for 'gRPC'

• 1.1 'g' stands for 'good'

• 1.2 'g' stands for 'green'

• 1.3 'g' stands for 'gentle'

• 1.4 'g' stands for 'gregarious'

• 1.6 'g' stands for 'garcia'

• 1.7 'g' stands for 'gambit'

• 1.8 'g' stands for 'generous'

• 1.9 'g' stands for 'glossy'

• 1.10 'g' stands for 'glamorous'

• 1.11 'g' stands for 'gorgeous'

• 1.12 'g' stands for 'glorious'

• 1.13 'g' stands for 'gloriosa'

https://github.com/grpc/grpc/tree/v1.50.x
https://github.com/grpc/grpc/tree/v1.51.x
https://github.com/grpc/grpc/tree/v1.52.x
https://github.com/grpc/grpc/tree/v1.53.x
https://github.com/grpc/grpc/tree/v1.54.x
https://github.com/grpc/grpc/tree/v1.55.x
https://github.com/grpc/grpc/tree/v1.56.x
https://github.com/grpc/grpc/tree/v1.57.x
https://github.com/grpc/grpc/tree/v1.58.x
https://github.com/grpc/grpc/tree/v1.59.x
https://github.com/grpc/grpc/tree/v1.60.x
https://github.com/grpc/grpc/tree/v1.61.x
https://github.com/grpc/grpc/tree/v1.62.x
https://github.com/grpc/grpc/tree/v1.0.x
https://github.com/grpc/grpc/tree/v1.1.x
https://github.com/grpc/grpc/tree/v1.2.x
https://github.com/grpc/grpc/tree/v1.3.x
https://github.com/grpc/grpc/tree/v1.4.x
https://github.com/grpc/grpc/tree/v1.6.x
https://github.com/grpc/grpc/tree/v1.7.x
https://github.com/grpc/grpc/tree/v1.8.x
https://github.com/grpc/grpc/tree/v1.9.x
https://github.com/grpc/grpc/tree/v1.10.x
https://github.com/grpc/grpc/tree/v1.10.x
https://github.com/grpc/grpc/tree/v1.11.x
https://github.com/grpc/grpc/tree/v1.12.x
https://github.com/grpc/grpc/tree/v1.13.x

Open and Secure

Open-source Apache-2.0 license

Uses HTTP/2

Supports SSL/TLS

Support in many programming

languages including LabVIEW

Performant

•Uses Protocol Buffers

•Binary serialization

•High performance

•Supports server to client streaming

and bidirectional streaming.

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/light-speed-png/
https://creativecommons.org/licenses/by-nc/3.0/

Contract First Design

• Development starts with the contract or interface

gRPC Usage

gRPC Usage

gRPC Usage

HTTP/1.1 and Text Encoding

HTTP/2 and Binary Encoding

REST vs gRPC

• Suited for use in web browser.

• Uses JSON serialization

• Simple

• Stateless

• Flexible

REST

• Suited for server-to-server communication

• Uses binary serialization

• Supports streaming

• Strong typing

• Language agnostic API definition

gRPC

•grpc-web

oClient-side and Bi-directional streaming not supported

•gRPC JSON transcoding

oExpose gRPC services as a REST service

Best of both

Alternatives

Thrift

GraphQL

WebSockets

RabbitMQ

Kafka

This Photo by Unknown Author is licensed under CC BY

https://digital.report/opredeleniya-termina-internet/
https://creativecommons.org/licenses/by/3.0/

Protobuf

Protobuf

Service Definition

Protobuf

RPC Definition

Protobuf
Request Response

Protobuf

Message Definition

Protobuf

Fields

• Numbered starting at 1

• Numbered to support binary serialization

• Can be marked optional

• Can be marked repeated

• Can be marked oneof

• Can be:

odouble, float, int32, int64, uint32, uint64, …, bool, string, bytes.

oOther message types

oEnums

oMaps

oAny

Message Fields

•Protobuf or Client API

• IP address and port

Calling a gRPC Service

Demo

gRPC use at NI

grpc-labview

• Create gRPC clients and servers

in LabVIEW

• Open source

• MIT licensed

gRPC Server - LabVIEW

gRPC Client - LabVIEW

grpc-device

• gRPC Server and Client APIs

allowing NI's instrumentation to

be accessed and controlled

remotely

• Open source

• MIT licensed

grpc-device

Customer

Anecdote

• Standardization

• Cross-platform support

• Test time optimization

Chad Erickson – California FAE

grpc-teststand-api

• Execute TestStand sequences

remotely

• Early access

• Open source

• MIT licensed

InstrumentStudio RF Remote Panel

InstrumentStudio Pro Sequencer

InstrumentStudio Measurement Plug-Ins

InstrumentStudio

Measurement Plug-Ins

Problems with
Traditional Plugin Model

- Language lock-in

- Fatal errors

- Dependency management

- Debugging

- Sharing code

Can't easily share
instrument sessions
between languages

Demo

•Managing state between applications

oRegistering and reserving instrument sessions

oUsing pin maps

•Discovery and calling services

Microservice Challenges

• Discovery Service
o Discovery services on the machine

• Monitoring Service
o Monitor measurements between Instrument Studio and Test Stand

• Pin Map Service
o Share pin map between services and applications

• Session Management Service
o Manage hardware between services and applications

• I/O Discovery Service
o Discovery hardware I/O on system.

Utility Services

•Create a gRPC service

• Implement the measurement service proto

•Create serviceconfiguration file

•Create user interface

•Register with the DiscoveryService

How to create a measurement

ni-apis

• Collection of gRPC protos

• Open source

Measurement Interface

•First class support

•Abstracts gRPC away

•Handles DiscoveryService registration

•Handles channel creation

Python and LabVIEW

Python support

• Open source

• MIT Licensed

LabVIEW support

• Open source

• MIT Licensed

Service Configuration

Register Python Measurement

Define Python Measurement

Define Python Measurement

MeasurementUI

InstrumentStudio

TestStand

InstrumentStudio Measurement Plug-Ins

- Built on gRPC

- Easily develop measurements

- Easily reuse measurements between

InstrumentStudio and TestStand

- Easily debug measurements

Recommended

Presentations InstrumentStudio Pro: A Low-

code Environment for Manual
and Automated Measurements

Tuesday, 3:15pm

Room 17 A

What's New in LabVIEW
Wednesday, 10:15am

Room 19A

Make Measurement Reuse

your New Super Power

Wednesday, 2:45pm

Room 19B

•Workflows from Instrument Bring up to Test Automation

▪ Wednesday 1:30pm-3:45pm

▪ Ballroom E

Hands-On

Questions?

Certainly! Here are some common misconceptions about gRPC that you might want to address in your presentation:
1. gRPC is only for Google’s use:While gRPC was initially developed by Google, it is an open-source framework and is used by many organizations outside of Google1.
2. gRPC is too complex for simple applications:gRPC is designed for performance and scalability, but it can be used for simple applications as well, offering benefits like strong type checking
and code generation1.
3. gRPC can only be used with Protocol Buffers:gRPC typically uses Protocol Buffers for serialization; however, it can be configured to use other serialization formats like JSON or XML if
needed1.
4. gRPC is not suitable for browser clients:gRPC-Web enables gRPC to be used in browser-based applications, although it does have some limitations compared to gRPC on the server side1.
5. gRPC is only for microservices architecture:gRPC is often used in microservices due to its efficiency, but it can be used in any client-server architecture where performance is a concern1.
6. gRPC is not secure: gRPC supports robust security features. It can be used with SSL/TLS for encrypted transport, and it also supports authentication mechanisms1.
7. gRPC is always better than REST:While gRPC has performance advantages, REST might be a better choice for public APIs due to its simplicity and widespread familiarity among
developers2.
8. gRPC doesn’t support streaming:gRPC actually supports four kinds of RPCs, including server streaming, client streaming, bidirectional streaming, and the traditional unary call1.
9. gRPC is difficult to debug: With the right tools and practices, gRPC services can be debugged effectively. It’s important to use comprehensive logging and monitoring to troubleshoot
issues3.
10. gRPC is not performant with large payloads: gRPC is designed for performance, including with large payloads. However, it’s crucial to optimize message sizes and use streaming RPCs
appropriately to avoid performance pitfalls3.
These misconceptions can lead to misunderstandings about gRPC’s capabilities and use cases. Addressing them in your presentation can help clarify what gRPC is and how it can be
effectively utilized in various scenarios.

https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://blog.logrocket.com/graphql-vs-grpc-vs-rest-choosing-right-api/
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://medium.com/@haliltoksz/mastering-grpc-the-ultimate-guide-9e6e65ff9f71
https://grpc.wiki/performance-pitfalls-common-mistakes-to-avoid-when-using-grpc/
https://grpc.wiki/performance-pitfalls-common-mistakes-to-avoid-when-using-grpc/
https://grpc.wiki/performance-pitfalls-common-mistakes-to-avoid-when-using-grpc/

Maybe talk about how chad uses grpc for other customer use cases

	Connect Title + Divider Slides
	Slide 1
	Slide 2
	Slide 3

	Cover and Closing Options
	Slide 4: History of gRPC
	Slide 5: RPC
	Slide 6
	Slide 7: 'g' in gRPC
	Slide 8: Open and Secure
	Slide 9: Performant
	Slide 10: Contract First Design
	Slide 11: gRPC Usage
	Slide 12: gRPC Usage
	Slide 13: gRPC Usage
	Slide 14: HTTP/1.1 and Text Encoding
	Slide 15: HTTP/2 and Binary Encoding
	Slide 16: REST vs gRPC
	Slide 17: Best of both
	Slide 18: Alternatives
	Slide 20: Protobuf
	Slide 21: Protobuf
	Slide 22: Protobuf
	Slide 23: Protobuf
	Slide 24: Protobuf
	Slide 25: Protobuf
	Slide 26: Message Fields
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Calling a gRPC Service
	Slide 31: Demo
	Slide 32
	Slide 33: gRPC use at NI
	Slide 34: grpc-labview
	Slide 35: gRPC Server - LabVIEW
	Slide 36: gRPC Client - LabVIEW
	Slide 37: grpc-device
	Slide 38
	Slide 39: grpc-device
	Slide 40
	Slide 41
	Slide 42: Customer Anecdote
	Slide 43: grpc-teststand-api
	Slide 44: InstrumentStudio RF Remote Panel
	Slide 45: InstrumentStudio Pro Sequencer
	Slide 46: InstrumentStudio Measurement Plug-Ins
	Slide 47: InstrumentStudio Measurement Plug-Ins
	Slide 48: Problems with Traditional Plugin Model
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Demo
	Slide 56: Microservice Challenges
	Slide 57: Utility Services
	Slide 58: How to create a measurement
	Slide 59: ni-apis
	Slide 60: Measurement Interface
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Python and LabVIEW
	Slide 65: Python support
	Slide 66: LabVIEW support
	Slide 67: Service Configuration
	Slide 68: Register Python Measurement
	Slide 69: Define Python Measurement
	Slide 70: Define Python Measurement
	Slide 71: MeasurementUI
	Slide 72: InstrumentStudio
	Slide 73: TestStand
	Slide 74: InstrumentStudio Measurement Plug-Ins
	Slide 75: Recommended Presentations
	Slide 76: Hands-On
	Slide 77: Questions?
	Slide 78
	Slide 79
	Slide 80

