
The Big Refactor:

A Technological Challenge

and Business Outcomes

Kenny Kreitzer, CLA

Paul Holzrichter, CLAD

Outline

Who is Badger Meter?

Current State of Test Software

Assessment through NI Professional Services

Selection of Third Party

Future State

Q & A

- 118+ Years of Operation

- Present in over 50 Countries

- 9 Global Manufacturing Sites

- 2,000+ Employees

- 5 Global R&D Centers

Badger Meter - A Global Company

Smart Water Solution Offerings

Reliable

Radio Endpoints

Intelligent

Measurement Solutions

Network &

Data Collection

Meter Data

Management System

BEACON® SaaS

Cloud-Based

Secure Meter Data

Management

Actionable

Data Systems

LTE-M/IoT

Cellular Network

ORION® Mobile

Reading System

WO / SCADA
IM / CIS / GIS
MDMS / HYD

ORION®

NaaS Cellular

Endpoint

ORION®

Mobile

Endpoint

Utility Billing System

API-Driven Interoperable

Utility Data Systems

BEACON® SaaS

EyeOnWater® Consumer

Engagement

Recordall®

Nutating Disc

E-Series®

Ultrasonic

Flow

Restriction

Valve

Commercial

Turbines &

Compounds

Commercial

E-Series®

Ultrasonic

Water

Quality

Monitoring

Meter

Encoders

Distribution

System

Monitoring

Proven Solution: Reliability

Less than 0.5% failure rate over 20-year

life. Over 10 million ORION® endpoints

deployed at more than 3,000 Utilities

since 2002.

Current State of
Test Software

A Technology Shift

Large adjustment when moving from testing

Mechanical versus Electronic Meters

• Long lead time for modifications to the meter to be

introduced (mechanical) versus multiple possible

changes per year (electronic)

• One or two options (mechanical) versus "infinite"

configurability for electronic

• Order Specific programming

What Language should I use now?

Previously Test Engineer/Design Engineer could choose programming language

Baby Steps

• Easier to create UIs

• New Software – Must be written in LabVIEW

• Legacy Software – Ported/rewritten in LabVIEW as needed (ROI/business needs)

• Code Reuse

o VIPM – Distributing reuse source code

o Project Templates – Shell of program auto-generated (~50% complete)

Standardizing on LabVIEW

LabVIEW Architecture

GUI

Controller

Debugger Database Hardware

Compiled into a

single EXE

1 to N Controllers, based on # of UUTs

Results in...

• Mostly custom code

• Similar but unique GUIs

And........Another Sequencer!

• Changes without recompile*

• Password Protected

• Standard comparison

• Developer does not have to worry about formatting results into internal database format

The Good

The Bad

• A lot of maintenance

o Debugging, Documentation updates, keeping up with VI scripting changes to "auto-upgrade"

• Lacked features like looping steps, branching, etc.

NI Professional
Services

Best Practices and Code Review

Some Issues with Current Process

• Current framework is not scaling fast enough

• Too much QA validation for each update

• Onboarding is taking longer than desired

• Harder to find advanced LabVIEW knowledge locally

Is moving to TestStand the correct move?

Customer Feedback

• Meet with all teams that interact (direct and indirectly) with the software

• Quality Engineering

• Manufacturing Engineering

• Test Engineering

• Operators

• What do they like?

• Dislike?

• What do they wish for?

Talk to ALL Stakeholders

Recommendations

• Try to use the standard process models

- Custom Process Models make it harder to update to newer TS versions

- PPLs CAN be useful to prevent missing file issues

- Would also help with validation, since PPLs are compiled code

- Make measurements or “test steps” reusable to allow code sharing

- Utilize NI tools for Soft Front Panels (think InstrumentStudio or

MeasurementLink)

Recommendations

Less code needed to "startup" a tester

Third Party
Assistance

Just because you can do it....

• Time and effort to complete internally was too great

• Engaged third party to "jump start" our development

o Experience in creating TestStand UI

o Allow BMI to own source code when complete

o DQMH and TestStand

▪ DQMH Consortium was a HUGE help here

▪ Chose NeoSoft as the partner

We knew we could create UI, but at what cost?

Documentation

• Requirements Gathering

o Even if you think you have enough detail to explain your project, you likely need

more!

oWe (Test Group) knew several things (and assumed others did) but were not

communicated properly.

• Stale documentation can cause confusion

o There are MANY good presentations and tools on LabVIEW documentation on

YouTube (and here!)

oDocumentation can be a pain in the butt, but worth it in the long run.

Outcomes

Using More PPLs

• "Teststand-ify" the DQMH Modules before making into PPL

o Free tool from NeoSoft that will convert all DQMH responses to Request and Wait for Reply,

among other changes.

• Testing out Plugin based PPLs

o Some challenges with 32/64 bit PPLs and where to put them on disk

• Trying to keep compatibility between LabVIEW code and TS

o PPLs in the same location on disk

• Protect code changes (pre-compiled)

Refactor some of the DQMH Modules

Custom Step Type

• Due to requirements of internal database, the name of the parameter

needs to be pre-defined in the BMI database.

• Only supports Pass/Fail instead of Passed, Failed, Error, Aborted,

Terminated.

• Only the custom Step Type is used to generate text to be sent to

database.

The UI

1 UUT

2 UUTs

Reporting

- TestStand allows Test Result reporting to multiple data repositories

▪ Internal Database

• Can use existing DQMH module after "TestStandify-ing"

• Module compiled into PPL

• Internal Database data must be synchronous reporting

▪ Cloud production analytics (WATs)

• WATs provides TestStand Plugin to automatically import data

• LabVIEW API is open source, but usually requires some customization to add all features

• Or create DIY post processer to generate output into one of 3 possible file formats

What does Developer need to do?

• Process Model and Callback overrides take care of most

of the setup

• Developer can focus more on just the

tests/measurements (as originally intended)

• Uses Parallel Model by default

• Can adjust from 1 to 16 UUTs via configuration file

setting

• Send messages to UI

Q and A

	Connect Title + Divider Slides
	Slide 1: The Big Refactor: A Technological Challenge and Business Outcomes
	Slide 2: Outline
	Slide 3: Badger Meter - A Global Company
	Slide 4: Smart Water Solution Offerings
	Slide 5: Proven Solution: Reliability
	Slide 6: Current State of Test Software
	Slide 7: A Technology Shift
	Slide 8: What Language should I use now?
	Slide 9: Baby Steps
	Slide 10: LabVIEW Architecture
	Slide 11: Results in...
	Slide 12: And........Another Sequencer!
	Slide 13: NI Professional Services
	Slide 14: Some Issues with Current Process
	Slide 15: Customer Feedback
	Slide 16: Recommendations
	Slide 17: Recommendations
	Slide 18: Third Party Assistance
	Slide 19: Just because you can do it....
	Slide 20: Documentation
	Slide 21: Outcomes
	Slide 22: Using More PPLs
	Slide 23: Custom Step Type
	Slide 24: The UI
	Slide 25: 1 UUT
	Slide 26: 2 UUTs
	Slide 27: Reporting
	Slide 28: What does Developer need to do?
	Slide 29: Q and A

