


TestStandifier

Adapt your DQMH® modules

to efficient usage in TestStand



CLA, CTA, LabVIEW Champion

• 18 years working with LabVIEW (PC, RT, FPGA), TestStand, VeriStand, FlexLogger

• 17 years working for NI partners

• Currently Vice-President of Engineering at Neosoft Technologies (Canada)

• Involved in several open-source projects

Cyril GAMBINI, M. Eng, Neosoft Technologies



Founded in 2000, NI partner since 2008

• CLA/CLD/CLAD, CTA/CTD, CLED, CPI, LV Champion on staff

• DQMH® Trusted Advisor

• System integration and retrofit – Software, mechanic and electric assemblies 

• Automated test systems

• Acquisition and control systems

• Embedded RT and FPGA systems

• Hardware In the Loop systems (HIL)

• Automated inspection systems



• DQMH® and TestStand

• TestStandifier

• Using the output in TestStand

Agenda



Computer scientist

• Pioneering contributions to programming languages and distributed computing

• Introduced abstracted data types and principle of data abstraction

• Elaborated the principal of Liskov substitution (OOP)

• Second woman to receive the Turing award

• Professor at the MIT

#OurFemalesAreGiant – Barbara Liskov



What is TestStand ?

• TestStand is an ENGINE to run test sequences

• Calls adapters to execute code (LV, .NET, DLL, …)

• UIs allow to create and visualize sequences

DQMH® and TestStand

What is DQMH® ?

• DQMH® stands for Delacor Queued Message Handler

• Freely available reference design for LabVIEW (framework)

• Modules executing as long as needed

• Public API defining how to use the module

• Tester to manually trigger Public API 

• Maintained by a consortium - https://dqmh.org

https://dqmh.org/


TestStand

Purpose:

• Execute SCRIPTED sequences

• Give a status to a UUT

• Report results

Handles WHEN a code is executed:

• Using the process model

Handles 1 UUT or multiple UUT tests (batch or parallel)

• TS engine automatically duplicate sequences to execute

DQMH® and TestStand

DQMH®

• Modules can be singletons or cloneables

• The tester is built for ‘free’ (and very useful)

• Enforces documentation

• Control when to start / stop a module

• Keep data context during its execution



‘Traditional’ TestStand programming

Steps handle the logic

• All the code requested to be executed by TS is encapsulated 

within the step

Steps are short in time

• When an adapter runs, TS waits !

• Handle termination within the step

Steps may produce errors

• TS can catch errors returned by a step and trigger a specific 

sequence to run (Error Callback)

Steps may produce data

• TS may collect the data for result processing / reporting

DQMH® and TestStand



Why using DQMH with TestStand ?

• Code can be done without TestStand in mind

• Access to the tester from LabVIEW and from TestStand

• Forces to create atomic steps by design (atomicity of the requests)

• Capability to keep a context outside of TS

• Easy to create helper loops (continuous monitoring in // of a sequence execution)

• Cloneables fit well with batch and parallel process models

DQMH® and TestStand



As easy as it seems to be ?

Few problems to overcome :

• Launching a module : several steps

• Rapidly stop your sequence execution on demand

• Where should be the error handling ?

• Tester : blocking execution !

• Synchronise ModuleID and TestSocketIndex

DQMH® and TestStand



TestStandifier



Validating a module

• Relies on the DQMH® validator

• Continues only if the module is valid (according to the validator)

• A modified module MIGHT run well

• Can’t imagine how many weird stuff we saw !

TestStandifier



Build a source distribution (and more)

• Duplicates the original module

• Relinks all subVIs to be flattened and not depend on vi.lib

• Inserts the tester in the lvlib and create wrappers

• Modifies Request and Replies

• Modifies ModuleID handling for Cloneables

TestStandifier

Never touches the original module !



Rapidly stop a sequence by 
modifying ‘Request and Reply’ 

• Can wait for a long time waiting an answer 

(notification primitive)

• Wait no more than 100ms for answer.

Repeat until timeout reached or execution 

termination

• Monitor TS for execution termination

every 100ms

• No modification of Main.vi !!

TestStandifier



Makes the DQMH® Tester run
in parallel to your test sequence

• Standard DQMH® Tester:

– Tester = While loop

– TestStand will wait until the tester returns to 

continue executing the sequence 

– Can only be stopped if manually closed 

(Window closing)

• TestStandifier creates wrappers VIs to start / stop 

the tester and calls the wrappers in a sequence

TestStandifier



Builds a PPL !

• Creates a temporary project to link the lvlib

• Creates a PPL specification

• Enforces dependencies to be always included

• Only one file to handle !

TestStandifier

The TestStandified module is autonomous !



Creates a sequence file !

• Creates sub-sequence to launch a module

• Creates a sub-sequence to launch the tester

• Creates a sub-sequence to stop the tester

• Creates a sub-sequence stop a module

• Creates a sub-sequence per Request & Reply

• Creates a PostStepRunTimeError callback within the sequence file

• Maps VI IOs to Sequence IOs

TestStandifier



Launching a module

Align the Start Module and Sync Module 

steps in a sequence

1. Place Start Module VI

2. Place Sync VI

3. Link them thanks to a local variable

4. Parameters published on the 

sequence call (by value / by reference) 

TestStandifier



ModuleID synchronization

• TestStand sequences are launched in 

order but do not start in order

• ModuleID is incremented and stored in a

feedback node

• Offer a way to override the ModuleID 

generation

• TestSocket Index  = Module ID

(helps for Batch / Parallel Process Models)

TestStandifier



Output is composed of 1 sequence file and 1 PPL

• Concentrate on TESTSTAND ! Sequence file is now a ‘library’ !

• Use the ability of a sequence call to execute actions in parallel

• Handle your errors in the created PostStepRunTimeError if needed

• Synchronize your Module ID to your TestSocket index

• Prefer launching / stopping your modules from Process Model Callbacks

• Don’t forget: code runs in parallel to your sequence execution

• Use and abuse of the tester ! (advice: create Round Trips !)

Using the output



Available for free on VIPM !!

• Regularly maintained by Neosoft Technologies

• NI / VIPM Forum to post issues / questions / how much you like it !

– https://forums.ni.com/t5/Neosoft-Technologies/Support-Forum-Neosoft-DQMH-

TestStandifier/td-p/4328567

– https://forums.vipm.io/forum/102-dqmh-teststandifier-by-neosoft-technologies/

• Open to sponsorship to add functionalities

• Maintain compatibility with new versions of DQMH®

Use it !

https://forums.ni.com/t5/Neosoft-Technologies/Support-Forum-Neosoft-DQMH-TestStandifier/td-p/4328567
https://forums.ni.com/t5/Neosoft-Technologies/Support-Forum-Neosoft-DQMH-TestStandifier/td-p/4328567
https://forums.vipm.io/forum/102-dqmh-teststandifier-by-neosoft-technologies/


Developers, sponsors and supporters !

• Doyoung Kim, Neosoft Technologies

• Raphael Fortin, Neosoft Technologies

• DQMH® Consortium

• Darren Nattinger for advices on VI scripting

• VIShots for sponsoring

Acknowledgements - Questions

www.neosoft.ca

Cyril GAMBINI

cgambini@neosoft.ca

http://www.neosoft.ca/
mailto:cgambini@neosoft.ca
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