

TestStandifier

Adapt your DQMH® modules

to efficient usage in TestStand

CLA, CTA, LabVIEW Champion

• 18 years working with LabVIEW (PC, RT, FPGA), TestStand, VeriStand, FlexLogger

• 17 years working for NI partners

• Currently Vice-President of Engineering at Neosoft Technologies (Canada)

• Involved in several open-source projects

Cyril GAMBINI, M. Eng, Neosoft Technologies

Founded in 2000, NI partner since 2008

• CLA/CLD/CLAD, CTA/CTD, CLED, CPI, LV Champion on staff

• DQMH® Trusted Advisor

• System integration and retrofit – Software, mechanic and electric assemblies

• Automated test systems

• Acquisition and control systems

• Embedded RT and FPGA systems

• Hardware In the Loop systems (HIL)

• Automated inspection systems

• DQMH® and TestStand

• TestStandifier

• Using the output in TestStand

Agenda

Computer scientist

• Pioneering contributions to programming languages and distributed computing

• Introduced abstracted data types and principle of data abstraction

• Elaborated the principal of Liskov substitution (OOP)

• Second woman to receive the Turing award

• Professor at the MIT

#OurFemalesAreGiant – Barbara Liskov

What is TestStand ?

• TestStand is an ENGINE to run test sequences

• Calls adapters to execute code (LV, .NET, DLL, …)

• UIs allow to create and visualize sequences

DQMH® and TestStand

What is DQMH® ?

• DQMH® stands for Delacor Queued Message Handler

• Freely available reference design for LabVIEW (framework)

• Modules executing as long as needed

• Public API defining how to use the module

• Tester to manually trigger Public API

• Maintained by a consortium - https://dqmh.org

https://dqmh.org/

TestStand

Purpose:

• Execute SCRIPTED sequences

• Give a status to a UUT

• Report results

Handles WHEN a code is executed:

• Using the process model

Handles 1 UUT or multiple UUT tests (batch or parallel)

• TS engine automatically duplicate sequences to execute

DQMH® and TestStand

DQMH®

• Modules can be singletons or cloneables

• The tester is built for ‘free’ (and very useful)

• Enforces documentation

• Control when to start / stop a module

• Keep data context during its execution

‘Traditional’ TestStand programming

Steps handle the logic

• All the code requested to be executed by TS is encapsulated

within the step

Steps are short in time

• When an adapter runs, TS waits !

• Handle termination within the step

Steps may produce errors

• TS can catch errors returned by a step and trigger a specific

sequence to run (Error Callback)

Steps may produce data

• TS may collect the data for result processing / reporting

DQMH® and TestStand

Why using DQMH with TestStand ?

• Code can be done without TestStand in mind

• Access to the tester from LabVIEW and from TestStand

• Forces to create atomic steps by design (atomicity of the requests)

• Capability to keep a context outside of TS

• Easy to create helper loops (continuous monitoring in // of a sequence execution)

• Cloneables fit well with batch and parallel process models

DQMH® and TestStand

As easy as it seems to be ?

Few problems to overcome :

• Launching a module : several steps

• Rapidly stop your sequence execution on demand

• Where should be the error handling ?

• Tester : blocking execution !

• Synchronise ModuleID and TestSocketIndex

DQMH® and TestStand

TestStandifier

Validating a module

• Relies on the DQMH® validator

• Continues only if the module is valid (according to the validator)

• A modified module MIGHT run well

• Can’t imagine how many weird stuff we saw !

TestStandifier

Build a source distribution (and more)

• Duplicates the original module

• Relinks all subVIs to be flattened and not depend on vi.lib

• Inserts the tester in the lvlib and create wrappers

• Modifies Request and Replies

• Modifies ModuleID handling for Cloneables

TestStandifier

Never touches the original module !

Rapidly stop a sequence by
modifying ‘Request and Reply’

• Can wait for a long time waiting an answer

(notification primitive)

• Wait no more than 100ms for answer.

Repeat until timeout reached or execution

termination

• Monitor TS for execution termination

every 100ms

• No modification of Main.vi !!

TestStandifier

Makes the DQMH® Tester run
in parallel to your test sequence

• Standard DQMH® Tester:

– Tester = While loop

– TestStand will wait until the tester returns to

continue executing the sequence

– Can only be stopped if manually closed

(Window closing)

• TestStandifier creates wrappers VIs to start / stop

the tester and calls the wrappers in a sequence

TestStandifier

Builds a PPL !

• Creates a temporary project to link the lvlib

• Creates a PPL specification

• Enforces dependencies to be always included

• Only one file to handle !

TestStandifier

The TestStandified module is autonomous !

Creates a sequence file !

• Creates sub-sequence to launch a module

• Creates a sub-sequence to launch the tester

• Creates a sub-sequence to stop the tester

• Creates a sub-sequence stop a module

• Creates a sub-sequence per Request & Reply

• Creates a PostStepRunTimeError callback within the sequence file

• Maps VI IOs to Sequence IOs

TestStandifier

Launching a module

Align the Start Module and Sync Module

steps in a sequence

1. Place Start Module VI

2. Place Sync VI

3. Link them thanks to a local variable

4. Parameters published on the

sequence call (by value / by reference)

TestStandifier

ModuleID synchronization

• TestStand sequences are launched in

order but do not start in order

• ModuleID is incremented and stored in a

feedback node

• Offer a way to override the ModuleID

generation

• TestSocket Index = Module ID

(helps for Batch / Parallel Process Models)

TestStandifier

Output is composed of 1 sequence file and 1 PPL

• Concentrate on TESTSTAND ! Sequence file is now a ‘library’ !

• Use the ability of a sequence call to execute actions in parallel

• Handle your errors in the created PostStepRunTimeError if needed

• Synchronize your Module ID to your TestSocket index

• Prefer launching / stopping your modules from Process Model Callbacks

• Don’t forget: code runs in parallel to your sequence execution

• Use and abuse of the tester ! (advice: create Round Trips !)

Using the output

Available for free on VIPM !!

• Regularly maintained by Neosoft Technologies

• NI / VIPM Forum to post issues / questions / how much you like it !

– https://forums.ni.com/t5/Neosoft-Technologies/Support-Forum-Neosoft-DQMH-

TestStandifier/td-p/4328567

– https://forums.vipm.io/forum/102-dqmh-teststandifier-by-neosoft-technologies/

• Open to sponsorship to add functionalities

• Maintain compatibility with new versions of DQMH®

Use it !

https://forums.ni.com/t5/Neosoft-Technologies/Support-Forum-Neosoft-DQMH-TestStandifier/td-p/4328567
https://forums.ni.com/t5/Neosoft-Technologies/Support-Forum-Neosoft-DQMH-TestStandifier/td-p/4328567
https://forums.vipm.io/forum/102-dqmh-teststandifier-by-neosoft-technologies/

Developers, sponsors and supporters !

• Doyoung Kim, Neosoft Technologies

• Raphael Fortin, Neosoft Technologies

• DQMH® Consortium

• Darren Nattinger for advices on VI scripting

• VIShots for sponsoring

Acknowledgements - Questions

www.neosoft.ca

Cyril GAMBINI

cgambini@neosoft.ca

http://www.neosoft.ca/
mailto:cgambini@neosoft.ca

	TSfifier presentation
	Slide 1
	Slide 2
	Slide 3
	Slide 4

	Agenda
	Slide 5

	OurFemalesAreGiant
	Slide 6

	DQMH & TestStand
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

	TestStandifier
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	Using the output
	Slide 21
	Slide 22

	Acknowledgements
	Slide 23

