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Before we get started

All of my presentations (including this one) are available at:

                     dnatt.org

(slides, demos, and links to video recordings)

This presentation’s link: https://bit.ly/slowvis    

         

     

      Download link for ZoomIt

https://bit.ly/slowvis
https://learn.microsoft.com/en-us/sysinternals/downloads/zoomit
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Outline

• Why I’m talking about this stuff

• Stuff I’m not going to talk about

• Stuff I’m going to talk about

• Real-world demos that show the stuff I talked about
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Why am I giving this presentation?

• About once a month, somebody comes to me with a slow VI and asks me to make it 

run faster.

• These slow VIs reside in a wide variety of LabVIEW applications.

• …but are usually of the type “do something with a big chunk of data”.

• Over the years I have accumulated a toolbox of simple, general-purpose techniques 

for improving VI execution time.

• I am sharing those techniques with you today.
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Stuff I’m not going to talk about

• Desktop Execution Trace Toolkit

• Show Buffer Allocations

• Profile Buffer Allocations

• The coolest LabVIEW feature you’ve never heard of

• Benchmarking techniques

• http://bit.ly/brainlesslabview

• How the LabVIEW compiler works

• Introduction to the LabVIEW Compiler

• LabVIEW Compiler Under the Hood

• Real-Time/FPGA

http://bit.ly/brainlesslabview
https://forums.ni.com/t5/Top-of-Utah-LabVIEW-User-Group/Introduction-to-the-LabVIEW-Compiler/td-p/3557624
https://www.ni.com/en/support/documentation/supplemental/10/ni-labview-compiler--under-the-hood.html
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Stuff I’m going to talk about

• VI Profiler

• The good, the bad, and the ugly

• VI Settings

• Enabled debugging, Priority, Inlining, etc.

• Parallel For Loops

• Programming Patterns for Performance

• Sets and Maps

• Illustrative real-world demos
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Disclaimer

• There are times when we have to do silly things to eke out more performance from 

our VIs.

• If code readability and maintainability is our #1 goal, we shouldn’t do these things.

• If code performance is our #1 goal, we may have to.

• Items marked as “!” in this presentation denote these situations.

• “Make it work, make it right, make it fast.” – Kent Beck

...then make sure it still works.
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VI Profiler
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VI Profiler

• Official name: “Profile Performance and Memory”

• Tools > Profile > Performance and Memory

• Has been around forever

• Gives information on execution

time of VIs, along with optional
info on memory usage
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VI Profiler – Simple Usage Procedure

1. Launch Tools > Profile > Performance and Memory

2. Check ‘Timing statistics’

3. Click Start

4. Run your code

5. Click Snapshot

6. Interpret Results
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VI Profiler – The Good

• Very low barrier to entry

• Very easy to interpret results

• Automatically sorts by VI Time
• Sortable columns (but VI Time is

almost always what I want to sort by)

• Enabling “Timing statistics” shows

the “# Runs” column
• Useful when deciding if inlining

makes sense
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VI Profiler – The Bad

• C-based feature

• No LabVIEW-based extensions 

• Inline VIs do not show up

• Lots of mostly distracting info
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VI Profiler – The Ugly

• Absolute time values are often unexpected

• A VI that takes 10 seconds to run might show ‘VI Time’ values that sum to 
something completely different

• One reason is that parallel operations are summed

• A VI with two parallel loops that run within 1 second will show a profile time of 2 seconds

• Another reason is because “LabVIEW-friendly sleep time” is not included

• LabVIEW-friendly sleep: Wait functions, Event Structure, TCP, Queues

• LabVIEW un-friendly sleep: OS-level (e.g. driver functions, DLL calls)

• Use VI Time value as a relative metric

• Focus on the big numbers

• Ignore the small numbers

• You’re making progress if the big numbers get smaller and your VI execution time
decreases
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VI Profiler – What about Memory?

• The VI Profiler gives memory usage info on a per-VI basis

• Profile Buffer Allocations gives memory usage info on a per-node basis

• (most of the time)
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VI Profiler – More Granular Information

• Use Edit > Create SubVI to create temporary subVIs of suspect code (!)

• Workaround for the lack of per-node execution time

• These subVIs will appear in the VI Profiler to help you narrow down issues

vs.

{

{

Watch out for sub-arrays!
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VI Settings
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VI Settings

• Inline VIs that run a lot

• Removes subVI overhead

• Opens up potential optimizations when subVI boundaries are removed

• Dead code elimination, Constant folding, etc.

• Don’t worry about Priority or

Preferred Execution System

• Save copies of vi.lib VIs to inline
and optimize them (!)

• Give them a different icon

• Document the caller VI
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VI Settings – When to apply them

• Inline VIs don’t show up in the VI Profiler 

• Mark as inline after you’re done profiling to get that last speed boost

• Turn off debugging on non-inline VIs after you’re done profiling

• (Debugging setting doesn’t matter for non-debug outputs like EXEs and PPLs)
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Parallel For Loops



ni.com

Parallel For Loops

• Easiest way to speed up existing For Loop code

• The first thing I look for when I get a “slow VI”

• Parallelize the outer-most loop

• Don’t parallelize nested loops

• (with rare exception)

• VI will become broken if the loop

cannot be parallelized
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Parallel For Loops – How many loop instances?

• Don’t wire ‘P’ (see guidance below)

• ‘Number of generated parallel loop instances’ specifies the maximum 

number of parallel instances the LabVIEW compiler will generate

• “Just use 8”
• (unless you know for sure you’ll need more)

-1: Use value in dialog

0 (unwired): Use the most available logical processors 

(up to configured value)

1 or greater: Use wired value (up to configured value)

is the same as
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Programming Patterns for 

Performance
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Programming Patterns for Performance part 1

• Control and Indicator terminals always on the top-level diagram (of subVIs)

• Remove decision points from diagrams if you can

• Like error case structures

• Basic string primitives vs. “newer” stuff like JSON (!)

• Consolidate class accessors in tight loops (!)

• …or get the data out of classes before the tight loop starts (!)
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Programming Patterns for Performance part 2

• Modifying cluster and array elements
• If you need the original element value, use In Place Element Structure

• If you don’t, use Bundle By Name or Replace Array Element

• NEVER delete/index from array then rebuild

• If you see multiple branches of a (large) array wire, you *may* need a DVR
• Or if you have the large array in a promiscuous functional global variable

• When refactoring for performance, DVRs should be a last resort
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Sets and Maps
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Good/Gooder/Better/Betterer/Best/Bester

• Good – Search 1D Array

• Gooder – Search Unsorted 1D Array.vim

• Better – Custom binary search

• Betterer – Search Sorted 1D Array.vim

• Best – Variant Attributes

• Bester – Sets and Maps
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Performance Benefits of Maps

Maps eliminate the data type conversion required to store variant attribute keys as 

strings and values as variants. Plus, they’re an actual API and not a hack. ☺

Variant attributes are comparably performant if your keys are already strings and your 

values are already variants. (!)

If you find yourself dropping a Search 1D Array or a Build Array, ask yourself if you should 

be using Sets or Maps instead.

See my All About Collection Data Types presentation for more info:

https://bit.ly/dnattcollections

https://bit.ly/dnattcollections
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Real-world Demos
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Thanks for attending!

Remember, you can download the presentation here:

bit.ly/slowvis
Palettes

Parallelize your loops. Inline your subVIs. Profile your VIs. Write fast code.

dnatt.org
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