
ni.com

Darren Nattinger

Quick! Drop Your VI Execution Time!

General-purpose techniques to speed up your VIs

Chief Technical Support Engineer, CLA

NI

ni.com

Before we get started

All of my presentations (including this one) are available at:

 dnatt.org

(slides, demos, and links to video recordings)

This presentation’s link: https://bit.ly/slowvis

 Download link for ZoomIt

https://bit.ly/slowvis
https://learn.microsoft.com/en-us/sysinternals/downloads/zoomit

ni.com

Outline

• Why I’m talking about this stuff

• Stuff I’m not going to talk about

• Stuff I’m going to talk about

• Real-world demos that show the stuff I talked about

ni.com

Why am I giving this presentation?

• About once a month, somebody comes to me with a slow VI and asks me to make it

run faster.

• These slow VIs reside in a wide variety of LabVIEW applications.

• …but are usually of the type “do something with a big chunk of data”.

• Over the years I have accumulated a toolbox of simple, general-purpose techniques

for improving VI execution time.

• I am sharing those techniques with you today.

ni.com

Stuff I’m not going to talk about

• Desktop Execution Trace Toolkit

• Show Buffer Allocations

• Profile Buffer Allocations

• The coolest LabVIEW feature you’ve never heard of

• Benchmarking techniques

• http://bit.ly/brainlesslabview

• How the LabVIEW compiler works

• Introduction to the LabVIEW Compiler

• LabVIEW Compiler Under the Hood

• Real-Time/FPGA

http://bit.ly/brainlesslabview
https://forums.ni.com/t5/Top-of-Utah-LabVIEW-User-Group/Introduction-to-the-LabVIEW-Compiler/td-p/3557624
https://www.ni.com/en/support/documentation/supplemental/10/ni-labview-compiler--under-the-hood.html

ni.com

Stuff I’m going to talk about

• VI Profiler

• The good, the bad, and the ugly

• VI Settings

• Enabled debugging, Priority, Inlining, etc.

• Parallel For Loops

• Programming Patterns for Performance

• Sets and Maps

• Illustrative real-world demos

ni.com

Disclaimer

• There are times when we have to do silly things to eke out more performance from

our VIs.

• If code readability and maintainability is our #1 goal, we shouldn’t do these things.

• If code performance is our #1 goal, we may have to.

• Items marked as “!” in this presentation denote these situations.

• “Make it work, make it right, make it fast.” – Kent Beck

...then make sure it still works.

ni.com

VI Profiler

ni.com

VI Profiler

• Official name: “Profile Performance and Memory”

• Tools > Profile > Performance and Memory

• Has been around forever

• Gives information on execution

time of VIs, along with optional
info on memory usage

ni.com

VI Profiler – Simple Usage Procedure

1. Launch Tools > Profile > Performance and Memory

2. Check ‘Timing statistics’

3. Click Start

4. Run your code

5. Click Snapshot

6. Interpret Results

ni.com

VI Profiler – The Good

• Very low barrier to entry

• Very easy to interpret results

• Automatically sorts by VI Time
• Sortable columns (but VI Time is

almost always what I want to sort by)

• Enabling “Timing statistics” shows

the “# Runs” column
• Useful when deciding if inlining

makes sense

ni.com

VI Profiler – The Bad

• C-based feature

• No LabVIEW-based extensions 

• Inline VIs do not show up

• Lots of mostly distracting info

ni.com

VI Profiler – The Ugly

• Absolute time values are often unexpected

• A VI that takes 10 seconds to run might show ‘VI Time’ values that sum to
something completely different

• One reason is that parallel operations are summed

• A VI with two parallel loops that run within 1 second will show a profile time of 2 seconds

• Another reason is because “LabVIEW-friendly sleep time” is not included

• LabVIEW-friendly sleep: Wait functions, Event Structure, TCP, Queues

• LabVIEW un-friendly sleep: OS-level (e.g. driver functions, DLL calls)

• Use VI Time value as a relative metric

• Focus on the big numbers

• Ignore the small numbers

• You’re making progress if the big numbers get smaller and your VI execution time
decreases

ni.com

VI Profiler – What about Memory?

• The VI Profiler gives memory usage info on a per-VI basis

• Profile Buffer Allocations gives memory usage info on a per-node basis

• (most of the time)

ni.com

VI Profiler – More Granular Information

• Use Edit > Create SubVI to create temporary subVIs of suspect code (!)

• Workaround for the lack of per-node execution time

• These subVIs will appear in the VI Profiler to help you narrow down issues

vs.

{

{

Watch out for sub-arrays!

ni.com

VI Settings

ni.com

VI Settings

• Inline VIs that run a lot

• Removes subVI overhead

• Opens up potential optimizations when subVI boundaries are removed

• Dead code elimination, Constant folding, etc.

• Don’t worry about Priority or

Preferred Execution System

• Save copies of vi.lib VIs to inline
and optimize them (!)

• Give them a different icon

• Document the caller VI

ni.com

VI Settings – When to apply them

• Inline VIs don’t show up in the VI Profiler 

• Mark as inline after you’re done profiling to get that last speed boost

• Turn off debugging on non-inline VIs after you’re done profiling

• (Debugging setting doesn’t matter for non-debug outputs like EXEs and PPLs)

ni.com

Parallel For Loops

ni.com

Parallel For Loops

• Easiest way to speed up existing For Loop code

• The first thing I look for when I get a “slow VI”

• Parallelize the outer-most loop

• Don’t parallelize nested loops

• (with rare exception)

• VI will become broken if the loop

cannot be parallelized

ni.com

Parallel For Loops – How many loop instances?

• Don’t wire ‘P’ (see guidance below)

• ‘Number of generated parallel loop instances’ specifies the maximum

number of parallel instances the LabVIEW compiler will generate

• “Just use 8”
• (unless you know for sure you’ll need more)

-1: Use value in dialog

0 (unwired): Use the most available logical processors

(up to configured value)

1 or greater: Use wired value (up to configured value)

is the same as

ni.com

Programming Patterns for

Performance

ni.com

Programming Patterns for Performance part 1

• Control and Indicator terminals always on the top-level diagram (of subVIs)

• Remove decision points from diagrams if you can

• Like error case structures

• Basic string primitives vs. “newer” stuff like JSON (!)

• Consolidate class accessors in tight loops (!)

• …or get the data out of classes before the tight loop starts (!)

ni.com

Programming Patterns for Performance part 2

• Modifying cluster and array elements
• If you need the original element value, use In Place Element Structure

• If you don’t, use Bundle By Name or Replace Array Element

• NEVER delete/index from array then rebuild

• If you see multiple branches of a (large) array wire, you *may* need a DVR
• Or if you have the large array in a promiscuous functional global variable

• When refactoring for performance, DVRs should be a last resort

ni.com

Sets and Maps

ni.com

Good/Gooder/Better/Betterer/Best/Bester

• Good – Search 1D Array

• Gooder – Search Unsorted 1D Array.vim

• Better – Custom binary search

• Betterer – Search Sorted 1D Array.vim

• Best – Variant Attributes

• Bester – Sets and Maps

ni.com

Performance Benefits of Maps

Maps eliminate the data type conversion required to store variant attribute keys as

strings and values as variants. Plus, they’re an actual API and not a hack. ☺

Variant attributes are comparably performant if your keys are already strings and your

values are already variants. (!)

If you find yourself dropping a Search 1D Array or a Build Array, ask yourself if you should

be using Sets or Maps instead.

See my All About Collection Data Types presentation for more info:

https://bit.ly/dnattcollections

https://bit.ly/dnattcollections

ni.com

Real-world Demos

ni.com

Thanks for attending!

Remember, you can download the presentation here:

bit.ly/slowvis
Palettes

Parallelize your loops. Inline your subVIs. Profile your VIs. Write fast code.

dnatt.org

	Slide 1: Quick! Drop Your VI Execution Time! General-purpose techniques to speed up your VIs
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

