Quick! Drop Your VI Execution Time!

General-purpose techniques to speed up your VIs

Darren Nattinger

Chief Technical Support Engineer, CLA
NI

nl

Before we get started

All of my presentations (including this one) are available at:

e dnatt.org

(slides, demos, and links to video recordings)

This presentation’s link: https://bit.ly/slowvis

Download link for Zoomlt

ni.com

https://bit.ly/slowvis
https://learn.microsoft.com/en-us/sysinternals/downloads/zoomit

I1| ni.com
Outline

Why I'm talking about this stuff

Stuff I'm not going to talk about

Stuff I'm going to talk about

Real-world demos that show the stuff | talked about

I1| ni.com
Why am | giving this presentation?

About once a month, somebody comes to me with a slow VI and asks me to make it
run faster.

These slow VIs reside in a wide variety of LabVIEW applications.
...but are usually of the type “do something with a big chunk of data”.

Over the years | have accumulated a toolbox of simple, general-purpose techniques
for improving VI execution time.

| am sharing those techniques with you today.

I1| ni.com
Stuff I'm not going to talk about

Desktop Execution Trace Toolkit
Show Buffer Allocations
Profile Buffer Allocations
The coolestLabVIEW feature you've never heard of
Benchmarking techniques
http://bit.ly/brainlesslabview
How the LabVIEW compiler works

Introductionto the LabVIEW Compiler
LabVIEW Compiler Under the Hood

Real-Time/FPGA

http://bit.ly/brainlesslabview
https://forums.ni.com/t5/Top-of-Utah-LabVIEW-User-Group/Introduction-to-the-LabVIEW-Compiler/td-p/3557624
https://www.ni.com/en/support/documentation/supplemental/10/ni-labview-compiler--under-the-hood.html

I1| ni.com
Stuff I'm going to talk about

VI Profiler

The good, the bad, and the ugly
VI Settings

Enabled debugging, Priority, Inlining, etc.
Parallel For Loops
Programming Patterns for Performance
Sets and Maps

lllustrative real-world demos

I1| ni.com
Disclaimer

There are times when we have to do silly things to eke out more performance from
our VIs.

If code readability and maintainability is our #1 goal, we shouldn’t do these things.
If code performance is our #1 goal, we may have to.

ltems marked as “!” in this presentation denote these situations.

“Make it work, make it right, make it fast.” — Kent Beck

...then make sure it still works.

nl

VI Profiler

ni.com

nl

VI Profiler

- Official name: “Profile Performance and Memory”
- Tools > Profile > Performance and Memory

- Has been around forever

- Gives information on execution
time of VIs, along with optional
info on memory usage

ni.com

E‘ Profile Performance and Memory - Board Testing - Benefits of Object-Oriented Design.lvproj

- O

*

[Timing statistics Profile memory usage Application Instances
[Timing details Memaory usage B My Computer
Tire unit Size unit
milliseconds ~ kilobytes Select Application Instances.., W
Profile Data
VITime 5ubVisTime Total Time Project Library A A
Picture to Pixmap.vi "40005 0.0 4090.5 I
Unflatten Pixrmap.vi 2569.9 0.0 2569.9 I
Flatten Pixmap.vi 106.0 0.0 106.0 I
Test Boards_OBJECT.vi 65.3 6981.5 7046.8 M
Board Design.lvclass:Check Image Matches Design.vi 56.1 6902.5 6958.6 Board Design.h M
Test For Square of Colorwvi 47.8 6309.5 6857.3 I
Get Image Subset.vi 259 2681.6 27075 M
FPGA Chip.lvclass:Self Testvi 25.0 2588.2 2613.2 FPGA Chip.vel b
Board Design.vclass:Get Test Name.vi 9.5 2.3 1.9 Board Design.h M
Colorto RGB.wvi 6.8 0.0 6.8 b
Coerce Bad Rectwvi 5.7 0.0 5.7 M
Assembly Line Image Generator.vi 5.0 24 74 M
Print tn Nictanre nn Rnard i A0 nn A0 nY
>
Stop Save Close Help

nl

VI Profiler — Simple Usage Procedure

o a0 ~ w D F

Launch Tools > Profile > Performance and Memory

Check ‘Timing statistics’

Click Start

Run your code
Click Snapshot
Interpret Results

ni.com

E‘ Profile Performance and Memory - Board Testing - Benefits of Object-Oriented Design.lvproj — O *
Timing statistic Profile memory usage Application Instances
[Timing details Memaor, B My Computer
Tire unit Size unit
milliseconds ~ kilobytes Select Application Instances.., W
Profile Data
VITime 5ubVisTime Total Time #Runs An
Picture to Pixmap.vi "40005 0.0 4090.5 9400 0
Unflatten Pixrmap.vi 2569.9 0.0 2569.9 9400 0
Flatten Pixmap.vi 106.0 0.0 106.0 9400 0
Test Boards_OBJECT.vi 65.3 6981.5 7046.8 4 1
Board Design.lvclass:Check Image Matches Design.vi 56.1 6902.5 6958.6 600 0
Test For Square of Colorwvi 47.8 6309.5 6857.3 2400 0
Get Image Subset.vi 259 2681.6 27075 9400 0
FPGA Chip.lvclass:Self Testvi 25.0 2588.2 2613.2 1200 0
Board Design.vclass:Get Test Name.vi 9.5 2.3 1.9 600 0
Colorto RGB.wvi 6.8 0.0 6.8 3400 0
Coerce Bad Rectwvi 5.7 0.0 5.7 9400 0
Assembly Line Image Generator.vi 5.0 24 74 12 0
Print tn Nictanre nn Rnard i a4q nn a4q 1anan nY
>
Stop Snapshot Save Close Help

I1| ni.com
VI Profiler — The Good

- Very low barrier to entry
- Very easy to interpret results
- Automatically sorts by VI Time /

- Sortable columns (but VI Time is -1 o x
almost always what | want to sort by) Profile memory usage
[Timing details Memory usage ~
. (1 H . . . 7 - . E
Ti Size U
- Enabling “Timing statistics” shows | e T
milliseconds w kilobytes Select Application Instances...]
the “# Runs” column
b Vls Time Total Time # Runs An
- g g - . Picture to Pixmapwvi 050, 0.0 4080.5 9400 0
. Useful when dECIdIng If Inllnlng Unflatten Pixmap.vi 25699 0.0 25699 9400 0
Flatten Pixmap.vi 106.0 0.0 106.0 9400 0
makes Sense Test Boards_OBJECT.vi 65.3 6981.5 7046.8 4 1
Board Design.lvclass:Check Image Matches Design.vi 56.1 6902.5 6958.6 600 0
Test For Square of Colorwvi 47.8 6809.5 6857.3 9400 0
Get Image Subsetwvi 25.9 2681.6 2707.5 9400 0
FPGA Chip.lvclass:Self Testvi 25.0 2588.2 2613.2 1200 0
Board Design.lvclass:Get Test Namewvi 9.5 2.3 1.9 600 0
Color to RGB.vi 6.8 0.0 6.8 9400 0
Coerce Bad Rectwi 5.7 0.0 5.7 9400 0
Assembly Line Image Generator.vi 5.0 24 74 12 0
Print tn Nictanre nn Bnard wi 4a nn dq 1GnAN nY
£ >
Stop Snapshot Save Close Help

I1| ni.com
VI Profiler — The Bad

- C-based feature
- No LabVIEW-based extensions ®
- Inline VIs do not show up

g A A Profile Performance and Memory - Board Testing - Benefits of Object-Oriented Design.lvproj — O *
- Lots of mostly distracting info - i ; J o

Profile Data

VI Time # Runs
Picture to Pixmap.vi "4090.5 9400
Unflatten Pixmap.vi 2569.9 9400
Flatten Pixmap.vi 106.0 9400
Test Boards_OBJECT.vi 65.3 4
Board Design.lvclass:Check Image Matches Design.vi 56.1 600
Test For Square of Colorwvi 478 3400
Get Image Subset.vi 259 9400
FPGA Chip.lvclass:Self Test.vi 250 1200
Board Design.lvclass:Get Test Namewvi 9.5 600
Color to RGB.vi 6.8 9400
Coerce Bad Rectwi 5.7 9400
Assembly Line Image Generator.vi 5.0 12
Print tn Nictanre nn Rnard i 4q 1an4n
£

Stop Snapshot Save Close Help

I1| ni.com
VI Profiler — The Ugly

Absolute time values are often unexpected

A VI that takes 10 seconds to run might show VI Time’ values that sum to
something completely different

One reason is that parallel operations are summed
A VI with two parallel loops that run within 1 second will show a profile time of 2 seconds

Another reason is because “LabVIEW-friendly sleep time” is not included
LabVIEW-friendly sleep: Wait functions, Event Structure, TCP, Queues
LabVIEW un-friendly sleep: OS-level (e.g. driver functions, DLL calls)

Use VI Time value as a relative metric
Focus on the big numbers
Ignore the small numbers

You're making progress if the big numbers get smaller and your VI execution time
decreases

nl

ni.com

VI Profiler — What about Memory?

- The VI Profiler gives memory usage info on a per-VI basis
- Profile Buffer Allocations gives memory usage info on a per-node basis

- (most of the time)

[=] Profile Buffer Allocations - O x
File Help
Application Instances All ~ Maximum buffers to display, 100 5 Size unit kilobytes v
Buffer ID | VI Name Max Bytes| Avg Bytes | Min Bytes | # Runs | A
29 Test Boards_OBJECTvi 67.78k 67.78k 67.70k 1
Test Boards_OBJECT wi 67.788k

Board Design.lvclass:Check Image Matches Design.vi
34 Magi :Self Testvi

"W Time vs Memory Graph

Time (s)

Thresheld (B}

1.024k

Start

HE w

Help

B Profile Performance and Memory - Board Testing - Benefits of Object-Oriented Design.lvproj - O x

[] Timing statistics Application Instances

[Timing details W My Computer A
Time unit Size unit
milliseconds ~ obytes Select Application Insta v
Profile Data
Avg Bytes Min Bytes Max Bytes AvgBlocks Min Blocks Max Bloc a
Picture to Pixmap.vi 140.22k 72.83k 14057k 3 3 4
Unflatten Pixmap.vi 58.48k 168.48k 4 4 4
Flatten Pixmap.vi 13.70k 12 12 12
Board Design.lvclass:Check Image Matches Dy 7751k 15 15 13
Test Boards_OBJECTwi 20471.72k 607 607 607
Test For Square of Color.vi 142,58k 6 6 6
Get Image Subset.vi 173.68k 3 3 3
Board Design.lvclass:Get Test Name.vi 6.47k 5 5 5
Get ID Number.vi 1.99k 0 0 0
FPGA Chip.lvclass:Self Testvi 73.97k 73.97k 7401k 2 2 2
Point to Distance on Board.vi 234k 234k 234k 0 0 0
Component.lvclass:iGet Row and Column.vi 3.27k 3.27k 3.27k 0 0 0
Calartn RGR v 2 a7 2 a7l 2 a7 2 2 2 v
< >
Stop Save Close Help

I1| ni.com
VI Profiler — More Granular Information

- Use Edit > Create SubVI to create temporary subVIs of suspect code (!)
Workaround for the lack of per-node execution time

- These subVis will appear in the VI Profiler to help you narrow down issues

Profile Data
VI Time SubVls Time Total Time # Runs
Waveform Time to Date Time String.vi 80145 0.0 a014.5 2500000
{ WriteToC5V.vi 5719.9 80145 13734.4 1 Watch out for sub-arrays!
VS.
Profile Data
VITime 5ubVisTime Total Time # Runs
Waveform Time to Date Time String.vi 81607 0.0 a1e0.7 2500000 &[a[7]
Untitled 3 (SubVl) 4803.7 81607 12964.4 25
Untitled 1 (SubVl) 13748 0.0 1374.8 25
Untitled 2 (SubVl) 333.3 0.0 333.3 25
WriteToCSV.vi 194.5 14652.6 148871 1

nl

VI Settings

ni.com

I1| ni.com
VI Settings

- Inline Vs that run a lot
- Removes subVI overhead

- Opens up potential optimizations when subVI boundaries are removed
Dead code elimination, Constant folding, etc.

- Don’t worry about Priority or B i Popeies .
Preferred Execution System Ecution S

[Allow debugging Priority

- Save copies of vi.lib VIs to inline "
and Opt|m|ze them (I) (O Non-reentrant execution Preferred Execution System

. same as caller w
(®) Shared clone reentrant execution

© lee them a dlffe re nt ICon (O Preallocated clene reentrant execution [J Enable automatic error handling
. [JRun when opened
Reentrancy settings affect memory usage, call
° Docume nt the Ca"er VI overhead, jitter, and state maintained within the DSuspend when called

V1. Display Context help for guidance with

selecting the best setting for your use case. L Clear indicators when called

Auto handle menus at launch

I Inlinesub\fl into calling Vis I

Cancel Help

nl

VI Settings — When to apply them

Inline VIs don’t show up in the VI Profiler ®
Mark as inline after you're done profiling to get that last speed boost

Turn off debugging on non-inline Vis after you’re done profiling
(Debugging setting doesn’'t matter for non-debug outputs like EXEs and PPLS)

ni.com

nl

Parallel For Loops

ni.com

Nl
Parallel For Loops

- Easiest way to speed up existing For Loop code
The first thing | look for when | get a “slow VI”

- Parallelize the outer-most loop
Don'’t parallelize nested loops

L E4d
=

ni.com

(Wlth rare exceptlon) E' For Loop lteration Parallelism
© VI Wi” become brOken if the Ioop Enableloopiteration parallelism

. Mumber of generated parallel loop instances
cannot be parallelized ‘
Iteration partiticning schedule

(® Automatically partition iterations
O Specify partitioning with chunk size (C) terminal

[Allow debugging
(Forces iterations to execute sequentially)

Cancel

@Clickthe Help button to read about performance considerations.

Help

I1| ni.com
Parallel For Loops — How many loop instances?

- Don’t wire ‘P’ (see guidance below)

- ‘Number of generated parallel loop instances’ specifies the maximum
number of parallel instances the LabVIEW compiler will generate
- “Just use 8"

- (unless you know for sure you'll need more) EI I
. . [: For Loop lteration Parallelism *
-1: Use value in dialog
0 (unwired): Use the most available logical processors e Enable loop iteration paralleism
. Mumber of generated parallel loop instances
(up to configured value) -

8
1 or greater: Use wired value (up to configured value)

lteration partiticning schedule

®) putomatically partition iterations
(O Specify partitioning with chunk size (C) terminal

[Allow debugging

CPU Information M m (Forces iterations to execute sequentially)
P .
L5 is the same as [E _ o
{:Fi:.} @Cllck the Help button te read about performance considerations.
[

Cancel Help

nl

Programming Patterns for
Performance

ni.com

I1| ni.com
Programming Patterns for Performance part 1

Control and Indicator terminals always on the top-level diagram (of subVIs)
Remove decision points from diagrams if you can
Like error case structures
Basic string primitives vs. “newer” stuff like JSON (!)
Consolidate class accessors in tight loops (!)
...or get the data out of classes before the tight loop starts (!)

nl

Programming Patterns for Performance part 2

Modifying cluster and array elements
If you need the original element value, use In Place Element Structure
If you don’t, use Bundle By Name or Replace Array Element
NEVER delete/index from array then rebuild
If you see multiple branches of a (large) array wire, you *may* need a DVR
Or if you have the large array in a promiscuous functional global variable
When refactoring for performance, DVRs should be a last resort

ni.com

nl

Sets and Maps

ni.com

I1| ni.com
Good/Gooder/Better/Betterer/Best/Bester

Good — Search 1D Array
Gooder— Search Unsorted 1D Array.vim

Better — Custom binary search
Betterer— Search Sorted 1D Array.vim

Best — Variant Attributes
Bester — Sets and Maps

nl

ni.com

Performance Benefits of Maps

Maps eliminate the data type conversion required to store variant attribute keys as
strings and values as variants. Plus, they’re an actual APl and not a hack. ©

Variant attributes are comparably performant if your keys are already strings and your
values are already variants. (!)

If you find yourself dropping a Search 1D Array or a Build Array, ask yourself if you should
be using Sets or Maps instead.

See my All About Collection Data Types presentation for more info:
https://bit.ly/dnattcollections

https://bit.ly/dnattcollections

nl

Real-world Demos

ni.com

nl

ni.com

Thanks for attending!

Remember, you can download the presentation here:

bit.ly/slowvis

Parallelize your loops. Inline your subVils. Profile your VIs. Write fast code.

> dnatt.org

	Slide 1: Quick! Drop Your VI Execution Time! General-purpose techniques to speed up your VIs
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

