

From Concept to Execution Analytics in Action

Who am I?

Matt Holt, Principal Solutions Architect; CLA, CPI, E.I.T. BSEE / BSCS – Texas Tech

I enable digital transformation initiatives and data-driven decision making.

- 2022: Joined NI Digital Transformation Practice
- 2020: Global Digitalization Leader; Celanese
- 2019: Systems Architect; IIoT Implementation Board Lead Lockheed Martin
- 2017: Software Evangelist; MFC Test Engineering Lockheed Martin
- 2014: CTO; IIoT and Microgrid Control ELM FieldSight, LLC
- 2010: Lead Architect; Test and Automation / IIoT Dell Engineering Services
- 2007: Passed CLA Practical Exam
- 2006: Passed CLAD and CLD Exams
- 2004: Programming Supervisor; Manufacturing Smart Factory Toshiba International Corporation

Who am I?

Mike Castañeda, Principal Solutions Architect; CLA

BSCE – University of Florida MSCS – Arizona State University

My focus is on automation solutions and backend analytics

2021: Principal Solutions Architect in the Digital Transformation Team at NI
2016: Staff Software Engineer at Intel - RF Validation IOTG Automation and Analytics
2013: Sr. Test R&D Engineer at Intel - RF Validation ICDG Automation and Analytics
2010: Applications Engineer at Fujitsu - RF Validation Automation
2006: Software Engineer at Intel - Electrical and Signal Integrity Validation Automation

Why are we here?

- Overview of the process
 - -Trade Studies / Data collection
 - Define and monitor your Successes
- Examples
 - Example 1: Automotive Contract Manufacturing Management
 - Example 2: ADG Customer Test Data and Utilization
 - Example 3: Cameras Manufacturer Manufacturing Optimization

Where are you now?

Who and What?

How can you be successful?

When do we start?

COANECT

connact

Focus on process improvement

Processes measured

Processes characterized for the organization and is proactive.

Study the industries!

- General
 - McKinsey & Company, IBM Institute for Business Value, Boston Consulting Group, Harvard Business Review, IEEE, Upwork
- Industry Specific
 - AviationWeek, BCG Digital Transformation Report, Deloitte Industry Clouds, Financial Times, COPILOT / ChatGPT
- Trade Shows
 - NIConnect, IEEE, Emerson Exchange, Digital Transformation Summit
- ASK THE EXPERTS
 - Contact your sales / account teams, reach out on LinkedIn

Automotive: Contract Manufacturing

Where they Started

Each facility within each Contract Manufacturer:

- 1. Uniquely tracks and reports yield, throughput, and FPY
- 2. Limits visibility to actual production data
- 3. May or may not report bonepile
- 4. Maintains unique test processes and standards
- 5. EMAIL based reporting

The Process

COAACT

				I second a second second	12
Workspace	Product	TestProgram	All ~	Failure older than [Days]	3 ~
1	2 ml 1 11 1			21.	
	 The dashboard scans to including the time range 	he list of units defined	d by the to	op filters	
	Including the time rang	e.			
	2. Returns a list of all unit	s which failed more th	nan x day	's ago and	
•	didnt run again since.			2 m 2	

~					Bone pil	e			
¢	Serial Number 🐬	Last started At 🐬	Station Name 🐬	Product 🐬	Test Program 🐬	Iteration 🐬	Status 🖓	Failed step ♥	Days S
ക	523	2024-04-16 22:35:41	<u>10L</u>			2	Fail	WIFL	<u>5 days</u>
~	523	2024-04-16 22:35:41	<u>10L</u>			2	Fail	WIFI_	<u>5 days</u>
Q	<u>523</u>	2024-04-16 22:35:41	<u>10L</u>			2	Fail	<u>WIFL</u>	<u>5 days</u>
	<u>689</u>	2024-04-16 22:45:08	<u>20R</u>			3	Fail	<u>5G V</u>	<u>5 days</u>
	298	2024-04-16 22:56:22	<u>06R</u>			3	Fail	Bluet	<u>5 days</u>
	747	2024-04-16 23:21:21	<u>06L</u>			1	Fail	<u>5G V</u> (<u>5 days</u>
	<u>997</u>	2024-04-16 23:42:14	<u>17L</u>			2	Fail	Wait	<u>5 days</u>
	<u>997</u>	2024-04-16 23:42:14	<u>17L</u>			2	Fail	Wait	<u>5 days</u>
	508	2024-04-16 23:56:03	<u>01R</u>			2	Fail	XTT	5 days
	<u>964</u>	2024-04-17 00:32:57	<u>05R</u>			2	Fail	Wait	<u>5 days</u>
	<u>964</u>	2024-04-17 00:32:57	<u>05R</u>			2	Fail	Wait	<u>5 days</u>
	855	2024-04-17 00:44:20	<u>06L</u>						<u>5 days</u>
0	971	2024-04-17 00:52:05	<u>07R</u>				Fail	<u>WIFL</u>	<u>5 days</u>
0	971	2024-04-17 00:52:05	<u>07R</u>				Fail	WIFL	<u>5 days</u>
O	<u>971</u>	2024-04-17 00:52:05	<u>07R</u>				Fail	WIFI_	<u>5 days</u>

- 1. Consistent and real-time Yield, Throughput, and FPY
- 2. Access to production system health, all measured data (including calibration sequences)
- 3. Bonepile data is retrievable real-time
- 4. Confirms to CUSTOMER processes and standards
- 5. Access to an UNPRECDENTED view of all contract manufacturers

Aerospace and Defense: Test and Utilization

Where they Started

- 1. Isolated Lab environments
- 2. No data standardization
- 3. Unique testing environments and data management solutions
- 4. Limited metrics and analytics
- 5. No method of easily accessing or querying data
- 6. No method of monitoring test stations

The Process

COAACT

Serial Number	Part Number 🖓	Test Program 🖓	System 🖓	Operator 🖓	Status 🖓	Start
A1101	Voltage Regulator 4.23.24	VoltageRegulator_Simple_v1	(empty)	Dani	Done	2024
A4217	Voltage Regulator 4.23.24	VoltageRegulator_Simple_v1	(empty)	John	Done	2024
B2105	Voltage Regulator 4.23.24	VoltageRegulator_Simple_v1	(empty)	John	Done	2024
B7318	Voltage Regulator 4.23.24	VoltageRegulator_Simple_v1	(empty)	John	Done	2024
C8759	Voltage Regulator 4.23.24	VoltageRegulator_Simple_v1	(empty)	Dani	Done	2024
D8721	Voltage Regulator 4.23.24	VoltageRegulator_Simple_v1	(empty)	Dani	Done	2024
E5914	Voltage Regulator 4.23.24	VoltageRegulator_Simple_v1	(empty)	John	Done	2024
(empty)	(empty)	shorttestpreview80	patools-appl-01	(empty)	Running	2024
(empty)	(empty)	shorttestpreview	patools-appl-01	(empty)	Running	2024

COAACT

WHERE THEY ARE NOW

- 1. The customer now has a centralized location for storing all of their result data.
- 2. Access to data is controlled using SystemLink's Role-Based Access Control, which is tied to security groups defined by the customer's Single Sign On Provider
- 3. Data is standardized across multiple test programs and follows a common data model.
- 4. Analytics such as FPY and Utilization can now be monitored and calculated across all of their test programs
- 5. The customer reported a savings of around **100 hours per week** for just 1 test program after their pilot was complete.

Cameras Manufacturer: Manufacturing Optimization

Where They Started

- 1. Reactive actions triggered by costly scrap generation
- 2. Required Human intervention to correct issue
- 3. Produced line stop and UPH loss
- 4. Fixing isolated operations without acting on root cause
- 5. Process analysis required realtime data correlation
- Traditional solution (Verify MTF 2 times) was adding 4X cycle time, impacting throughput

COANECT

The Process

COANCT

One Page Summary

Deployment Summary – Automotive Cameras

- Implemented adaptive manufacturing algorithms based of advanced cross-operational analytics to improve scrap and efficiency
- Predictive maintenance algorithms improved total • process efficiency and OEE (Performance)

Realized Benefits

- Reduced Scrap by >25%
- Retest/Rework reduction >30%
- Throughput increase of 15 Units per Hour (UPH)

Analysis Dashboards

0	MTF_	MTF_Statistic	s_1				
	Line 📍	Sub Product	Count	Ratio	Action	PreComp Suggested Change	PreComp Group
	1	A	3126	1.145	ОК		0.00425
	3	А	1033	1.108	Prompt for Pre-Comp Increase	+0.0025	0.0065
Þ	3	A	2063	1,175	ОК		0.007
	2	BCC	3109	1,139	ОК		0.00525

Outliers removed in the data analysis, so they do not influence compensation algorithm. Filter out all data that falls between MTF 0 < 0.4 & MTF 0.7 < 0.2

Analysis Dashboards

agg_dat	а							0	Π×
otential_Sign	nal 🕶 🌄 🖍	Select Filters •							
Operation	Product	Parametric Test Name	Line Compare_Group	Count	Median	RS	ZScore Potential_Signal		
CMAT	Camera	P_:ALIGN_TIME	4 TA002897_0001	46	21.544	1.2837	10.934 Y		^
CMAT		P :ALIGN TIME	3 TA002573 0001						
CMAT	Camera	P_:ALIGN_TIME)	
CMAT		P :ALIGN TIME	2 TA002739 0006					/	_
CMAT	Camera	P :ALIGN TIME	2 TA002573 0013						
CMAT	Camera	P :ALIGN TIME	4 TA002897 0012	9	19,285	0.094885	2.0471 NA		
CMAT	Camera	P ALIGN TIME	4 TA002897 0007	9	19.22	0.25426	1.7934 NA		
CMAT	Camera	P :ALIGN TIME	4 TA002897 0008	43	19.09	0.37787	1.2821 NA		
СМАТ	Camera	P ALIGN TIME	4 TA002777 0004	30	18 94	0.2096	0.6922 NA		
CMAT	Camera		4 TA002777 0006	11	18 802	0.42216	0 14945 NA		
CMAT	Camera	P ALIGN TIME	4 TA002897 0006	56	18 764	0 5493	0 NA		
CMAT	Camera		4 TA002897 0002	56	18 695	0.26566	-0 27137 NA		
CMAT	Camera		4 TA002897_0010	55	18 366	0.36953	-1 5653 NA		
CMAT	Camera		4 TA002805 0013	6	16.042	0.1086	-10 707 NA		
CMAT	Camera		4 TA002805_0012	6	15 606	0.24574	-12.065 NA		
CMAT	Camera	P_IALION_TIME	4 TA002805_0012	7	15.050	0.12472	12.000 NA		
CMAT	Camera	P_ALIGN_TIME	4 TA002805_0003		15.09	0.13473	12.09 NA		
CMAT	Camera	P_:ALIGN_TIME	4 TA002805_0005	5	14.00	0.037064	-12.133 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002739_0009	51	14.99	0.39328	3.1071 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002739_0014	21	14.049	1.3229	2.2889 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002739_0006	38	14.44/	0.41681	1.8055 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002573_0005	18	14.231	0.69481	1.286 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002739_0003	37	14.053	0.52/83	0.86015 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002573_0009	51	13.695	0.20202	0 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002573_0007	49	13.538	0.49299	-0.37669 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002573_0010	54	13.369	0.46389	-0.78276 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002739_0005	52	13.309	0.13993	-0.92612 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002739_0013	47	13.221	0.11324	-1.1373 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002739_0001	50	13.207	0.11278	-1.1696 NA		
CMAT	Camera	P_:ALIGN_TIME	3 TA002573_0004	15	12.903	0.24427	-1.9002 NA		
CMAT	Camera	P_:ALIGN_TIME	2 TA002573_0002	38	15.688	0.47721	1.9136 NA		
CMAT	Camera	P_:ALIGN_TIME	2 TA002573_0004	28	15.445	0.42161	1.374 NA		
CMAT	Camera	P_:ALIGN_TIME	2 TA002573_0011	34	15.175	0.77187	0.77324 NA		~
	-								

Capture and Alert specific fixture in CMAT that deviates along time away from population

connect

Analysis Dashboards

Oven Cart/Slot Yield Heat Map

🕐 🔍 🌠 [Blank] Error Code Rate by Run Date 23 1.0 0.90333 0.80667 Burn Slot Total Units > 2 • 🌾 97 • 🛠 NO BURN DATA • | 🍢 | 😪 Select Filters •) 🔍 🌠 🤉 97 - 0.71 - 0.61333 13-0.51667 100.00 % 100.00 % 100.00 % 17-- 0.42 100.00% 21-25-29-33-37-- 0.32333 - 0.22667 90.00% 0.13 Higher value = more rejects 80.00 75.00 % associated Code Rate 41-45-53-57-61-65-69-73-77-70.00% **Jig Carrier** Performance Heatmap 60.00% 50.00% Error 40.00% * 81-85-89-30.00% 20.00% 93-97-10.00% 101-105-02/05/2020 02/06/2020 02/07/2020 02/08/2020 02/09/2020 02/10/2020 Burn Cart 93 94 95 96 97 98 Sorted by: Run Date (ASC) - 0

- Burn oven location data and test operation Error Code data are merged to automatically detect bad slots
- Automated rule also sends cart/slots csv file enabling automatic blocking of those slots

5
55
56
57
58
59
60
63
64
66
67
68
69
70
71
75
76
79

Other "Connectivity, Data, and Insight" Activities

SystemLink User Group Meeting

O+ User Forum

Modernizing Your Lab

From Concept Through **Execution: Analytics in**

Analytics From Wafer to

SystemLink Ask Me

SystemLink Learning Courseware (V/ILT) Managing Systems and Assets with SystemLink