2024 AUSTIN

Advanced Battery Cell Testing Techniques

Over 10 years of experience developing automated test systems for validation and manufacturing of EV powertrain, with a focus on battery.

As a Principal Systems Engineer at NI Transportation, I am responsible for the design and deployment of industry-driven hardware and software test solutions. Previously, I worked as a manufacturing Engineer for Tesla.

Presenter: Felipe Quintana

Felipe Quintana Principal Systems Engineer

Agenda

- Presenter Introduction
- Cell Testing Challenges and Impact
- Common Cell Quality Testing Techniques
- Common Cell Defects
- Technical Background
- DCIR
- ACIR
- EIS
- The NI Advantage

Cell Testing Challenges and Impact

 \odot

Common Cell Quality Testing Techniques

Use-Cases and Considerations

Cage testing over time. the responsibility of the pack

Reach More considers current at

frequencies and compares and bin them appropriately

frequencies and compares and bin them appropriately. erall test time

NI Battery Cell Production Test Solutions

Test Station with NI/Cell Quality Offering Content \bigcap

Advanced Measurement Solutions are Required to Catch All Failure Modes

Other Common Defects Include:

-
- 2. Internal shorting
- 3. Internal contamination

After Electrolyte is Added:

- 1. Over/under-lithiation
- Graphite slurry defect
- 3. Electrolyte additive mixture defect
	-
- 5. SEI composition and distribution 6. Cell formation recipe assessment
	-

Basic OCV/Resistance measurements are not enough to detect all failure modes

Technical Background ⎸ Impedance

Frequency, Hz

Technical Background ⎸Cell Model

DC Internal Resistance (DC-IR)

Test Station with NI/Cell Quality Offering Content

 \bigcap

• **DCIR**

- **ACIR** • **EIS**
- HPCD
- OCV

 \bullet

Test Process ⎸ DC Internal Resistance (DC-IR)

The NI Solution

DC INTERNAL RESISTANCE (DC-IR)

NI Cell Quality Software DC-IR Example

AC Internal Resistance (AC-IR)

Test Station with NI/Cell Quality Offering Content

 \bigcirc

- **EIS**
- HPCD

 \bullet

Test Process ⎸ AC Internal Impedance (AC-IR)

High Frequency Current

The NI Solution

AC INTERNAL RESISTANCE (AC-IR)

*CAN BE SCALED BASED ON APPLICATION REQUIREMENTS

SPECIFICATIONS

- **Current**
- Frequency
- Repeatability
- Cycle Time
-

NI Cell Quality Software AC-IR Example

Electrochemical Impedance Spectroscopy (EIS)

Test Station with NI/Cell Quality Offering Content

 \bigcap

- **DCIR** • **ACIR**
- **EIS**
- HPCD • OCV

 \bigcap

Test Data Map to Cell Model

Test Process | EIS

The NI Solution

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS)

*CAN BE SCALED BASED ON APPLICATION REQUIREMENTS

SPECIFICATIONS

Repeatability 1µΩ

NI Cell Quality Software EIS Example

Why NI

PXI Solution for Cell Quality and Inspection

Timing and Synchronization PXI Chassis

PCI Express Gen 3 throughput up to 24 GB/s, sub nanosecond latency, P2P streaming, integrated triggering

Production Ready Rugged and Reduced Footprint

Integrate multiple instruments and channel expansion into a single chassis

Software Systems and Data Management

Integrates with solutions for managing system configuration, remote monitoring, and data aggregation and analysis

Flexibility

Modular, Programmable Hardware

Future-proof systems with reconfigurable hardware that can support various measurements and test techniques

Measurement Quality Accuracy and Repeatability

Industry-leader in repeatable and accurate measurements with a wide portfolio enables the right mix of cost and performance

Measurement IP

Out-of-the-box Solution

Pre-built IP for advanced battery test techniques, including OCV, ACIR, EIS, HPCD and others

PXI Based Cell Quality Analysis Provides Scalability and Flexibility

Utilize vendor defined analysis methods without access to intermediate data → difficult to understand battery attributes that require customized analysis

What Does 44 SMU Channels Look Like?

Box SMUs NI 1-ch SMUs

Comparable Power & Specs (Up to 200V, 3A, 40W)

2x Space Savings

Faster Execution

Integration

Low Volume Production/Validation nı

Medium/High Volume Productionn

Medium/High Volume Production n

DMC Service Areas Overview n

DMC programs the systems that keep factory floors running, including PLC, HMI, SCADA, Servos, Robotics and more.

MANUFACTURING AUTOMATION & INTELLIGENCE

DMC develops software and turnkey systems for automated testing across R&D, validation, production, and field environments using LabVIEW and Python programming and off-the-shelf and custom hardware.

DMC develops applications that connect to your systems applying intelligent algorithms and structured code including PC apps, web apps, mobile apps, and database driven systems. **EMERSON**

TEST & MEASUREMENT AUTOMATION

DMC can help you with your product development needs. Our services include developing intelligent hardware systems from circuit design and custom PC boards to complex embedded systems.

EMBEDDED DEVELOPMENT & EMBEDDED PROGRAMMING

APPLICATION DEVELOPMENT

DMC offers hands-on expertise to organizations that want to take **DIGITAL WORKPLACE SOLUTIONS**

advantage of technologies that improve productivity, communication, and collaboration in their digital workplace.

Established in 1996, DMC serves customers worldwide from offices in Chicago, Austin, Boston, Cincinnati, Dallas, Denver, Detroit, Houston, Nashville, New York, Raleigh, San Diego, Seattle, St. Louis, and Washington, D.C.

DMC Overview

DMC Certifications and Services n

- Battery test consulting
- ATE design/development
- Manufacturing integration

Warranty / Remanufacturing / Maintenance / Diagnostics

IC BPT Solution

IC BPT Solution

C Validation Test atform + NI Cell Quality IP

PMC BMS Test Platform

2024 AUSTIN

• Partner network that can help with the implementation of the solutions. DMC is one of our partners that has been involved in the battery space for over a decade, We have done a lot of work with DMC in the battery cell ,module and pack.

BACKUP and REFERENCE SLIDES FROM THIS POINT ONWARDS

Open Circuit Voltage (OCV)

EV BATTERY PRODUCTION PROCESS

 $4\frac{6}{4}$ Voltage [V] 3.5 Zone 3 Zone 2 3 Zone 1 0.4 0.3 $0.9\,$ 0.8 $0.7\,$ 0.6 0.5 $0.2\,$ 0.1 1 SOC

 \mathbf{n}

NI CONFIDENTIAL

Test Challenge

OPEN CIRCUIT VOLTAGE (OCV)

Detect micro-shorts that occur during cell aging process by monitoring OCV variation

Low Voltage

High Repeatability

Fast Cycle Times

REQUIREMENTS

Defective battery OCV changes gradually with time, accurate measurements are essential to early fault detection

Resolution 18-28 bits (sample rate dependent)

*can be scaled based on application requirements ²⁷

 \mathbf{u}

Screen grab of OCV Demo

Laser Weld Integrity Test

EV BATTERY PRODUCTION PROCESS

Test Challenge

LASER WELD INTEGRITY

Confirm weld seam quality by measuring resistance

IMAGE SOURCE: [Manufacturing Tomorrow: New Laser Sources Improve Battery Performance by Enabling dissimilar Metal Joining](https://www.manufacturingtomorrow.com/article/2018/08/new-laser-sources-improve-battery-performance-by-enabling-dissimilar-metal-joining/12001)

nΩ Repeatability

µΩ Resistance

High Speed

Precise Control

REQUIREMENTS

The Solution

LASER WELD INTEGRITY

BENEFITS

Cycle Times **Repeatability Repeatability** Scalability **Seculability** Footprint

*can be scaled based on application requirements 31

SPECIFICATIONS

Current Range **Cycle Time** Channels Isolation

m

15:20

Screen grab of Laser Weld Integretiy Demo

B Batterie Inspektor

High Pressurized Current Detection (HPCD)

ni.com

Test Challenge

High Pressurized Current Detection (HPCD)

Detect bad cells after applying high pressure by monitoring current variation in a short time

High Repeatability

Current Accuracy

Fast Cycle Times – few minutes to few seconds

REQUIREMENTS

Defective battery current changes in few seconds, accurate measurements are essential to shorten cycle times

The Solution

High Pressurized Current Detection (HPCD)

NI SUPPLIED CUSTOMER SUPPLIED PARTNER SUPPLIED

Procedure:

- Measure OCV in Constant Current Mode
- Change Pin State to Constant Voltage Mode by setting the voltage to OCV + few uV
- Measure and Monitor Current on a cell for few seconds
- Judge Pass and Fail

BENEFITS

Cycle Times **Repeatability Repeatability** Scalability **Scalability Example 2018**

We combine best-in-class measurement hardware, power electronics, software, and advanced data modelling techniques to deliver disruptive test solutions that significantly reduce the cost of test and enable auto manufacturers to accelerate their transition to electric vehicles.

Vision for Serving the Battery Test Workflow

n

NI CUSTOMER CONFIDENTIAL

IODULE)

NITCH), PXIe-2530B SWITCH)

e-4190 (2MHz, 40V)

lumber: 866575-18B

NI Cell Quality | PXI Bundles

Pre-Configured Systems

* Power cables needed for the systems are not included within the configurations and need to be another line item on the quote.

NI CONFIDENTIAL

A Better Solution for Battery Test

NI SMUs combine the functionality of **impedance and DC** instrumentation types into a **single form factor-** the first instrument of its class.

Power **simpler measurement systems** with high channel density and no connection changes

CELL QUALITY OFFERING OVERVIEW

Traditional Solution

PXIe-4190 for High Frequency EIS

- EIS Frequency: 40 Hz $-$ 2 MHz
- Max current source: 70mA
- EIS Frequency: .1Hz 1kHz
- Max current source: 3A

NI CONFIDENTIAL

NI OCV Solution is 3.5x More Accurate than Hioki 4560

The greater accuracy of the NI solution enables a higher-fidelity assessment of leakage current in a form factor that combines OCV and ACIR.

OCV Specifications

NI PXIe-4081: +/-55.4uV of uncertainty (assumes +/- 5C temperature range) Hioki 4560: +/-197uV (.0035%, +/- 5%)

HIOKI RT GRED BATTERY WINDANCE METER 27 | 1080 | 2180 | 1190 | 1 $6.0000 - c$ $-0.5000 -$ **USING** $25.6₇$

Key Points

- The 4081 has a self-calibration procedure that monitors the temperature drift of the onboard ADCs
- The NI uncertainty assumes a 2-year calibration window
- The Hioki uncertainty assumes a 1-year calibration window
- Hioki does not support a full calibration procedure
- NI uncertainty improves in a tighter temperature range
- Hioki requires an external temperature sensor to achieve specified accuracy, whereas the NI solution is internal
- Hioki has higher-accuracy OCV solution, but this will require a separate box in order to have both OCV and ACIR

Detailed Differentiators

- 1. Our instrumentation supports a broader range of frequencies for EIS, which enables analysis at different parts of the spectrum correlated with specific failure modes (specific spectrum is cell specific). Note that the addition of the 4190 enables ~2MHz, which is useful for specific defects
- 2. Our SMUs enable customization of the current range, which can be used to ensure the appropriate current is sourced to accommodate custom switch routing and production fixturing
- 3. The PXI form-factor enables a high density of measurements in a single chassis (ACIR, OCV, HPCD, Leakage, EIS, and more..)
- 4. The PXI form-factor also enables a mix of simultaneous and multiplexed inputs, which lets the customer balance cost and performance for their ideal throughout. For example, combine a bunch of 4147s for high density of simultaneous channels, or combine them with 2525s for even higher density at a lower price point per channel
- 5. Our software provides an API that enables extensive customization at the API, data and presentation layers
- 6. Our calibration procedure enables very precise measurements to be performed with custom fixturing and signal routing
- 7. Our time per measurement is generally faster thanks to the high-performance nature of PXI (of course, depends on specific measurement and setup, but referring mainly to ACIR)
- 8. Our accuracy and resolution are best-in-class. This is hard to benchmark because every EIS/ACIR measurement changes the SoC of the cell slightly, but initial testing has shown a smaller standard deviation than a Hioki box
- 9. Our solution is better suited for large cells with capacity over 140Ah (some of the competitors will struggle with larger sizes – we need to better quantify and assess this)

Expensive and time-consuming to produce

Significant variability in manufacturing process

Defects are difficult to detect

Directly impacts vehicle performance and safety

Significant impact on overall margin and profitability

Undergoing constant changes and improvements

Sensitive to supply-chain challenges

Need for strict control over transportation and handling

Requires significant investment into new equipment and personnel retraining

Field failures can have significant impact on brand and consumer sentiment

Batteries are a Limiting Factor

n

ni.com

Weeks Minutes - Days

Battery Production Challenges

New cells are charged precisely to coat the electrolyte before a lengthy aging and testing process

Challenge:

Achieving massive scale while improving profitability and maximizing quality

Cell Production Module and Pack Assembly Service and Remanufacturing

Cells are composed into a subassembly structure and ultimately combined with electronics to produce a final pack

Challenge:

Ensuring the quality and consistency of incoming components and assembly processes to minimize rework

Days

Batteries are evaluated to determine if they are still operating correctly and evaluated for second-life applications

Accurately characterizing the quality and utility of modules and cells to maximize

Challenge: their longevity

Overview of Cell Manufacturing Challenges

Volume of cell production is one of the largest bottlenecks limiting the market's ability to achieve ambitious EV production targets for a combination of the following reasons:

- The time required to produce a new cell is significant $(8 12 \text{ days})$, which necessitates achieving a massive operational scale
- Yields of cells are limited due to high variability in the manufacturing processes
- 3. Defects during the manufacturing process can be difficult to detect and they present significant risk to product performance and safety
- 4. Every interaction with cells increases the risk of introducing subtle defects or damage, thereby introducing the need for additional timeconsuming test activities
- 5. Ongoing improvements to cell formulation and form-factor may lead to more regular changes to the production process
- The complexity associated with servicing large and cumbersome power electronics

Achieving massive scale while maximizing profitably will require new approaches to manufacturing and test that increase throughout while also ensuring the products are exhaustively tested and that any defects can be rapidly isolated and corrected

Weeks

New cells are charged precisely to coat the electrolyte before a lengthy aging and testing process

Challenge:

Achieving massive scale while improving profitability and maximizing quality

m

Cell Production

NI CONFIDENTIAL

nt

Measurement to defect correlation

2024 AUSTIN

