
Developing Robust Rocket
Test Software with LabVIEW

“NASA Grade” Software

3

REDACTED
(National Laboratory)

What does “NASA Grade” mean?

* NASA Grade is a metaphor, not yet another standard.

Functional Requirements

Functional Requirements

Hardware Process Interface

Hardware

What are we connecting to?

• Channel Count

• Signal Types

• Data Rates

• Industrial Protocols

• OPC, Modbus, Profinet

• Scaling

• Filtering

Process

Walk us through it

• Step by step procedure

• Faults and Fallbacks

• User Input

Interface

Application IO

• P&ID

• Channel Naming

• Manual Control

• Multi-display

• Data exports

Functional Requirements

Hardware Process Interface

Who’s Asking?

Process Requirements
House rules

Appendices A-E

NASA Software

Engineering Handbook

(SWE)

NASA-STD-8739.8B A029-9701-XM1NPD 7500.1D cwe.mitre.org

NPR 7150.2C
NASA Procedural

Requirements

NPR 7150.2D
NASA Procedural

Requirements

NASA Requirements Documents

NASA Software

Assurance and

Software Safety

Standard

NASA Configuration

and Data

Management Plan

NASA Policy

Directive

Common

Weakness

Enumeration

Classification

A / C / D
Safety Critical?

*Dependency map simplified for readability

SDP

• 9000+ words

• 81 SWE Requirements

• 28 CWE Security
Policies

• Signed & Tracked

• Binding

Software Development Plan
Project Management

• Project Roles

• Developer Training

• Timelines

• Estimates

• Budgets

• Issue Tracking

• Issue Workflow

• Requirement Tracking

• Audits and Oversight

• Milestones

Configuration Management

• Software Records

• Branches and Repos

• Source Code Control

• Environmental Configuration

• DevOps Infrastructure

• Deployment Configuration

Software Design

• System Architecture

• COTs Software

• Software Reusability

• Sensitive Data

• Threat Assessment

• Software Classification

Development Standards

• Performance Design

• Data Segregation

• Input Validation

• Error Handling

• Fail Safe Design

• Coding principals

• LabVIEW Style

• Security Checklists

• Low Level Memory

Access

• Network Communication

• Encryption

• File IO

• System Commands

• Authentication

• Unit Testing

• Code Coverage

• Software Measurements

• Performance Metrics

• Static Analysis

Verification and Validation

• Deliverables

• Peer Reviews

• Pull Requests

• Review Workflow

• Review Checklists

• Integration Testing

• Delivery Verification

• Verification Reports

• Hardware In The Loop Testing

PDFPDF

SDP

• Source Controlled

• Generated

• HTML & PDF

• Integrated Metrics

The process behind the process

Link to requirement

source

Script.py

Link to where in the

document each process

requirement is addressed

[SWE-60]

[SWE-60]

Document Source is

controlled in GIT

metrics

https://swehb.nasa.gov/display/SWEHBVD/SWE-060+-+Coding+Software

Issue Tracking

• Status

• Priorities

• Roadmap

• Releases

• Users

• Developers

• Oversight

Epics: Overarching features

Defects: Unexpected behavior

Features: Things we need to add

Find the Goldilocks effort level

Requirements Tracking

Title: The software shall…

• Capability

• Specification

• Interface

• Metric

• Refences

Status: In Work

Verification Procedure: TBD

Bidirectional Traceability

Unit Test

Integration Test (sim / HIL)

Manual Procedure

7.1.1 Close the Tare Utility Panel by clicking the X in the top right corner.

a.Verify Tare Utility Panel closes
☐Pass ☐Fail

7.1.2 In the Channel Tree panel click (Slot 4 AI>s4 ai 01)

a.Verify the Tare scaler now displays the updated Offset value.
☐Pass ☐Fail
b.Record the s4 ai 01 offset ___________

7.1.3. Select the Popped out plot and view the data.

a.Verify the graph now shows that the raw and scaled channels

are offset by the Tare offset value. [REQ-237] [REQ-272][REQ-236]
☐Pass ☐Fail

Inspection

 Verify encryption algorithm meets specification

 Verify 95% Uptime

 Verify C to F converter, converts

 Verify a malformed config produces Error 5

Requirements Verification

 Verify DAQ timestamps match

 Verify Shutdown command stops the app

https://jki-net.atlassian.net/browse/DREQ-3038
https://jki-net.atlassian.net/browse/DREQ-3045
https://jki-net.atlassian.net/browse/DREQ-3037

Functional Requirements

Process Requirements

Assurance Requirements

Assurance Requirements

Coding Standards

Code Review

Unit Testing

HIL Testing

Static Analysis

Performance

Measurements

Security Evaluation

• Quality

• Code Smell

• Consistency

• Code Review

• Common tools

• Repeatability

• Templates

• Style Guide

Coding Standards

Directive

Principal

Guideline

Tip

NEVER Break

Only break if you have a good, documented reason

Do it when you can

Preferences and syntactic sugar

• Developer Standards

• Coding Style

• Error Handling

• Bugs

• Performance

• Readability

• Documentation

Code Review

Comment on

each file

Caught a

bug

! Bitbucket cannot

diff LabVIEW Files

• Define the expected
behavior

• Define, Assert

• Guarantee the interface

Part 1
Unit Testing

Assertions

(Pass or Fail)

Function Under Test

Define test suite

Test Results

(User Interface)

• Verify Faults

• Repeatable tests

• Easy to expand

• Define the corners

Unit Testing
Part 2

Test Passing and

Failing cases
Dynamic Tests Names

Easy to add

test cases

• Subsystem testing

• Sequence a runtime
behavior step by step

• Verify nominal behavior
and faults

Unit Testing
Part 3

Verify code generates

a specific error
Performance

Metrics

Inline timer vim

LabVIEW Style for

tests may differ

• How much code are you
testing?

Code Coverage

measure your tests

What % of the

diagram was

executed?

• Caraya runner

• Code Coverage

• Artifact Handling

J-Tester

Caraya +

==========================
 __ __ __ __
 /\ \ /\ \/ / /\ \
 __\ \ \ \ _"-. \ \ \
/_____\ \ _\ _\ \ _\
\/_____/ \/_/\/_/ \/_/

 jki.net
==========================
 j-tester-Caraya
==========================

Discovering Tests
 110 Caraya Test VIs discovered (96.3879s)
 30 total test VIs ignored due to regex
Starting Tests!
 Testing Complete 278.526s

 Test Results

 372 Tests
 1774 Test Assertions
 ALL 1774 PASSED
 Test Duration: 278.526s
 Test Report: test-results.xml

 Code Coverage Summary

 779 /2856 VIs measured
 75 VI's exempt from code coverage.
 Mean coverage: 24.85%
 Coverage Report: coverage-report.csv

+

Know what

IS and IS NOT

 being tested

Download Reports
Test Results+ Code Coverage

• Test whole subsystems

• data paths

• error handling

• Interfaces

• T.I.E Test Modes

• Client

• Controller

• Client + Controller (dev)

• Client (dev) + Exe

Integration
Testing

together now

Requires a Framework to Instantiate

the Object Under Test

Using Caraya to

Capture Results

Framework spins up System

then runs each tests

• Run on window CI
targets

• Deploy to RT targets

• Loopback testing

• External Testing

• Dogfooding

HIL Testing

Real IO

Design tests to work

with real hardware

Run Tests on

hardware

Test Like You Fly

Dev TestUnit Test

Integration

Test HIL Flight

Cost

Overhead

Complexity

• Catch Mistakes

• Enforce Standards

• Audit Style

• Automatic Fixes

• Static Analysis

Static Analysis

Never miss a broken VI
Automate Quality!

• Load dir, class, lvproj

• Run “Rules”

• Audit

• Fix!

• Beta Available Soon

J-Crawler

Static Analysis Utility

Load Items Run / Fix

Run / Fix

• Check on every commit

• Require pass to merge

• Easy to read results

• Easy configuration

• Allow list

• Rulesets

• Helpful Artifacts

J-Crawler

CI Static Analysis

Discovering Items...

Discovered 5,693 Items: (36.9s)
5,693 Total Files
4,220 LabVIEW VIs
831 LabVIEW Controls
228 LabVIEW Classes
3 Markdown Files
30 CSV Files
33 ini Files
27 XML Files
9 TDMS Files
3 VIPC FIles

CRAWLING...

CRAWL Complete 455s

j-crawler Rule Results

22,774 Total Results

Results by State
21,845 Passed Results
164 Skipped Results
16 Failed Results
748 Info Results
1 Errored Results

Results by Rule
(Times are unfolded parallel execution so may excede run time)
Broken : 4910 Passed, 141 Skipped, 6 Failed (25.8s)
DebuggingOn : 4216 Passed, 2 Failed (18.5s)
LibHierarchy : 3463 Passed, 7 Failed, 748 Info (21.0s)
NoAutoError : 4214 Passed, 4 Skipped (20.3s)
SeparateCompiledCode : 5042 Passed, 19 Skipped (11.7s)

FAILURES

16 Failed Results

lv_src\client\client-common\lib\lookup.vi :: LibHierarchy :: Mispalaced
lv_src\common\lib\j-console\filter_verb.vi :: LibHierarchy :: Mispalaced
lv_src\common\lib\j-scale\agent\scale.vi :: DebuggingOn :: (Disabled)
lv_src\common\lib\j-scale\channel\scale.vi :: DebuggingOn :: (Disabled)
lv_src\common\lib\name.validate.vi :: SeparateCompiledCode :: (Not Seperated)

+

What’s in this Repo?

Download

Reports

Require Passing

Tests to Merge

See the Error in your

Email

• Identify every use

• Security Checklist

• File IO

• Network Communication

• Authentication

• OS Commands

• Memory

Security

Audit with J-Crawler

Under Development

Automate with CI/CD

PUSH
Results

& Artifacts

Runner

Self-Hosted Windows Runner

YAML

J-Tester

J-Crawler

J-Builder

T.I.E.

Sequential Tester for Aerospace Research

 Ground & Operation Acceptance Testing

Configure in minutes
Drag and Drop configuration

DAQmx (1-100kHz)

OPC UA

Customizable multi-step scaling

Calculated channels

View Live Data
Multi-viewer support

Tables, Pop out plots

Savable workspaces

User customizable diagrams

Deterministic Control
1ms sequencing

Plugin control loops

PID / FFT / Bang Bang …

Configure

View

Control

Export

Client UI(s)

Acquire

Scale

Calculate

Sequence

Log

Controller

Win/RT

IO

• DAQmx

• OPC UA

Scaling, taring (zeroing)

Raw & Scaled Data

Calculated Channels

Control Loops

• PID

• FFT

• Bang Bang

IO Configuration

jki.net/star-goat

High precision output

control ~1ms resolution

Conditional monitoring

and branching

Automated / Manual Abort

Excel (csv) based config

Sequencing

jki.net/star-goat

Diagram

1.vi

Diagram

1.ini

View & Command any channel

“Codeless” user diagrams

Edit / Reload at runtime

Multi-screen viewing

Diagrams

jki.net/star-goat

NO CODE

VIs

Reload at

Runtime

Hardware Process Interface

Products
Solve

Pegasus

Test Executive
STAR-GOAT VIPM PRO

Package Manager

J-Builder
App Builder

J-Crawler
Static Analysis

J-Tester
Unit Testing

CI/CD Suite

Check out STAR-GOAT on the Expo Floor

Tarek Safwan

Sales Account Executive

tarek@jki.net

STAR-GOAT Inquires

star-goat@jki.net

Steve Summers

steve.summers@ni.com

jki.net/star-goat

Hunter Smith

Staff Software Engineer

hunter@jki.net

Thank You

jki.net/star-goat

	Intro
	Slide 1: Developing Robust Rocket Test Software with LabVIEW
	Slide 2
	Slide 3
	Slide 4
	Slide 5

	Functional
	Slide 6
	Slide 7
	Slide 8: Hardware
	Slide 10: Process
	Slide 11: Interface
	Slide 12

	Oversight
	Slide 13
	Slide 14: Process Requirements
	Slide 15: NASA Requirements Documents
	Slide 16: SDP
	Slide 17: SDP
	Slide 18: Issue Tracking
	Slide 19: Requirements Tracking
	Slide 20
	Slide 21

	Assurance
	Slide 22: Assurance Requirements
	Slide 23: Assurance Requirements
	Slide 24: Coding Standards
	Slide 25: Code Review
	Slide 26: Unit Testing
	Slide 27: Unit Testing
	Slide 28: Unit Testing
	Slide 29: Code Coverage
	Slide 30: J-Tester
	Slide 31: Integration Testing
	Slide 32: HIL Testing
	Slide 33: Test Like You Fly
	Slide 34: Static Analysis
	Slide 35: J-Crawler
	Slide 36: J-Crawler
	Slide 37: Security
	Slide 38: Automate with CI/CD
	Slide 39

	Outro
	Slide 40
	Slide 41
	Slide 42

	STAR-GOAT
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Products
	Slide 50
	Slide 51
	Slide 52
	Slide 53

