

Validate Radar with Radar Target Generation Software

Ahmed Khalid

Principal Offering Manager, ADG BU

Introduction

- Principal Offering Manager, Aerospace Defense and Government Business Unit
 - Radar System Test & Electronic Warfare System Test
 - RF Deployment, Prototyping and Research
- 12 Years at NI
 - Offering Management
 - Product Management
 - Sales, Sales Management, Systems/ Applications Engineering

Radar Target Generation

Agenda

- Introduction
- Market Trends & Innovation
- Challenges in Test
- NI's Approach to Radar System Test
- Radar Target Generation Software
- Q & A

The Why? | Contested & Congested Electromagnetic Spectrum Forcing Rapid Innovation

Market Trends & Innovation

Multimode Radar Systems

Digital AESA Arrays

Agile Radar Waveforms

Modern Radar Systems Frequency TOGHZ

New Capabilities:

.

- Enhanced multi-function capability
- Increased Radar Bandwidth
- Multiple beams at different
- Increased antenna array elements

oodo Other Radars

Flexibility in waveforms

Challenges of Radar System Level Testers

Challenges of Radar System Level Testers

Threat Radar

Channe.

Threat Signal

Asset

Clutter

(((IH)))

Unintentional Interference

Radar Test System must have following capabilities:

- Wide Instantaneous Bandwidth & Frequency Range
- Phase Coherent Channels Scalable System
- Waveform Agnostic From narrow Pulses to CW signals
- Target Range Close range to Space
- Ability to Generate:
 - Realistic multi-point targets
 - Support SAR, ISAR modes
 - Channel effects: weather, clutter
 - EA techniques
- Ability to Synchronize with Radar
- Generate Background Emitters
- Support Radar Test Workflows

Phases of Radar Design Test & Evaluation

NI Solutions For Radar System Test

Scope

ni.com

- Component to System
- Digital to RF

Capabilities

- RF Parametric Test
- Radar Target Generation
- Digital Interface Test
- Digital Target Insertion
- Software Automation
- Multi-Instrument Test
 Systems

NI Solution | Modular, Software-Defined Instrumentation for Radar Test and Validation

NI Solution | Vector Signal Transceiver (VST)

NI VST = Vector Signal Analyzer + Vector Signal Generator + Software Defined Radio

Calibrated, wideband vector signal analyzer:

- Frequency Range: 30 MHz to 26.5 GHz
- Programmable gain ranging: +25 dBm max,
- Up to 2 GHz Instantaneous IQ BW w/ planned 4 GHz expansion EoY '24
- Full bandwidth I/Q recording (or real-time processing)
- Independent or coherent operation with signal generator
- Supports multi-channel synchronization and coherency

Calibrated Wideband Signal Generator:

- Frequency Range: 30 MHz to 26.5 GHz
- RF Output Power: > +20 dBm up to 18 GHz,
- Up to 2 GHz Instantaneous IQ BW w/ planned 4 GHz expansion EoY '24
- Full bandwidth I/Q playback
- Integrated Analog Pulse Modulation optimized for >100 dB on/off ratios
- Independent or coherent operation with signal analyzer
- Supports multi-channel synchronization and coherency

Tx LO

Software defined, FPGA backend allows for evolution of applications over time, including real-time digital streaming of full RF IBW (up to 4 GHz)

NI Solution | VST Ecosystem

Real-Time Processing and Data Movement

- Scalable, open FPGA extensibility via NI FlexRIO products for real-time processing and DSP
- Up to 28.2 Gbps digital interfacing for bidirection, full rate I/Q streaming
- 3rd party HW or System Under Test interfacing (i.e. 100 GbE)

Inline S-parameters

- Integrated, inline VNA functionality for adding S-parameters and de-embedding to VST applications.
- Out of the box interactive GUI for quickly setting up S11/22, and S12/21 measurements.
- Includes CW or pulsed stimulus

Frequency Extension

- Extended frequency coverage of analysis and generation up to 54 GHz
- Integrated software control and calibration
- Bi-directional connectivity for conductive or over-the-air (OTA) integration

NI Solution | Designed for Multi-Channel

Channel Alignment

Magnitude Difference

NI RTG | Pre-Generated Target Scenarios 'List Mode'

NI Solution | Radar Target Generation Software 1.3

Parameters	System Capability
Number of Real-Time Targets	1-4 per RF Port
Range (Time Delay)	Maximum: 64,000 km Minimum: 125 m (<1 m in low latency mode)
Velocity (Doppler)	± 2 MHz, <5Hz resolution
Path Loss	Supports Digital and Analog Attenuation (Enhanced Dynamic Range)
Analog Attenuation Range	120dB Nominal
System Level Calibration	Integrated System Self-Calibration De-embedding of Cable Loss and Time Delay
Frequency Range	10 MHz to 26.5 GHz (Up to 54GHz supported)
Bandwidth	Up to 2 GHz
Supported Trigger Modes	Software, Hardware, Pulse Edge, Relative Time
Motion Profiles	Direct Simulation of Simple Target Motions
Target RCS Models	Swerling Models (1 – 5)
Supported Modes	Live Mode (Interface with Dynamic Scenario Generator)
	List Mode (Pre-generated File based Scenario Generation)
Update Rate	List Mode (Pre-generated File based Scenario Generation) < 70 usec (List Mode) < 1 msec (Live Mode)
Update Rate List Mode Depth	List Mode (Pre-generated File based Scenario Generation) < 70 usec (List Mode) < 1 msec (Live Mode) >10 million Target Entries

Transmit Pulse

Radar Under Test

NI RTG | Basic Data Path & Calibration

NI RTG | Basic Data Path & Calibration

Benefits of NI RTG Calibration and Data Path Architecture

Loopback Calibration

Accurate Time Delay & Power at the SUT interface.

Independent Data Paths

Retain doppler phase coherency pulse-to-pulse for multi-target scenarios Independence control of time delay enabling precise overlapped targets

NI RTG | Host Code and Application API

NI RTG | Extending RTG via User Defined Coprocessor

NI PXIe-5699 | High Level Overview

Fast Analog Gain Ranging module for Enhanced Dynamic Range

Key Features

Π

- Fast Analog Gain Ranging module to simulate:
 - Multiple Radar Target returns
 - Multiple emitters for EW Validation
- 1 slot PXI companion for VSTs
- Built-in loop back path for Calibration
- Onboard trigger port for external triggering

Parameter	Instrument Capability
Frequency Range	100 MHz – 26.5 GHz
Insertion Loss	7 dB @ 18 GHz 9 dB @ 26 GHz
Gain Range	90 dB nominal
RF transition speed	125 ns (estimate) Time from the first observed change of more than 1 dB after the trigger, measured to RF amplitude settled to 1 dB and phase settled to 5 degrees.
Latency	175 ns (estimate) Time from input trigger edge, measured to RF amplitude settled to 1 dB and phase settled to 5 degrees.

