

NI is now part of Emerson.

应用指南

NI Zigbee和Thread物理层 测试解决方案

000000

- 03 引言
- 04 物理层
- 04 仪器设置
- 05 测量

05 RFmx配置

使用RFmxDDemod测量EVM LabVIEW API .NET API 使用RFmxSpecAn SEM测量功率谱密度掩码 RFmx Waveform Creator:生成

10 推荐的NI套件

硬件

软件

11 相关链接

本文旨在说明如何借助NI RFmx软件的各种特性进行Zigbee[™]和Thread[™]规范所要求的物理层 (PHY)测量。

本文假定您已掌握包括NI RFmx在内的NI硬件和 软件的相关知识,并可访问IEEE 802.15.4-2020。 该文档可通过有效凭证在IEEE网站上查阅。

引言

Zigbee是一种基于IEEE 802.15.4规范的无线通信 技术。得益于低成本和低功耗的特性,使其成为 物联网和智能家居应用的理想选择。连接标准联 盟(以前称为Zigbee联盟)负责制定和认证Zigbee 标准,并提供前沿资讯。

同样,Thread是另一种基于IEEE 802.15.4的低功 耗短距离无线通信技术。该技术受Thread Group 监督。虽然Thread和Zigbee在网络层和应用层上 存在很大差异,但物理层具有一定相似性,可实现 互操作性,这在连接标准联盟和Thread Group之 间的官方合作中得到了证明。

本文详细讨论了OSI模型的物理层要求 (如图1 所示),以及满足这些要求所需的测试。

7	应用层 人机交互层,应用程序可在此访问 网络服务。
6	表示层 确保数据为可用格式,并在此进行 数据加密。
5	会话层 维护连接并负责控制端口和会话。
4	传输层 使用TCP和UDP等传输协议传输 数据。
3	网络层 决定数据传输的物理路径。
2	数据链路层 定义网络数据格式。
1	物理层 通过物理介质传输原始比特流。
<u></u> হ্র1	

OSI模型摘要,其中突出显示了物理层。

物理层

无论是Zigbee还是Thread,物理层都支持sub-GHz和2.4 GHz频段,每个频段都有自己的调制方式。详情见表1。

频段	频率	调制	使用区域	Zigbee
868 MHz	868 MHz-868.6 MHz	DDCK	欧洲	通道0
915 MHz	902 MHz-928 MHz	DPSN	美国、澳大利亚	通道1-10
2.4 GHz	2.4 GHz-2.4835 GHz	OQPSK	全球	通道11-26

表1

Zigbee和Thread频段的详细信息

仪器设置

本文介绍的解决方案使用NI基于PXI的矢量信号收发仪PXIe-5842。PXIe-5842同时用作波形发生器(播放经调制的标准 波形)和信号分析仪(接收信号并进行测量)。对于典型的DUT(如PA、LNA或FEM), PXIe-5842是执行下述测量所需的唯一RF 仪表。DUT控制、电源等可能还需要其他模块。

图2 NI PXI系统示例,包括绿框中的PXIe-5842。

E

测量

IEEE 802.15.4-2020中规定了Zigbee和Thread信号的测试要求。有关详细信息和确切要求,请参阅该规范:第12.3节详细说明了OQPSK物理层RF要求,第13.3节详细说明了BPSK物理层RF要求。

表2列出了一些传输测试要求,以及相应的RFmx特性和测量方法。

要求	RFmx测量
传输功率谱密度掩码	RFmxSpecAn SEM
EVM	RFmxDDemod
传输中心频率容差	RFmxSpecAn FCnt
传输功率	RFmxSpecAn TXP

表2

Ξ

选择IEEE 802.15.4物理层要求和建议采用的NI RFmx测量方法

RFmx配置

RFmx是NI基于测量的RF信号分析仪驱动程序。RFmx有多种特性,每种特性都支持进行多种测量。所有RFmx特性均包含 LabVIEW、.NET (C#或VB)和C语言的完整API。所有特性和API均支持所有NI RF信号分析仪硬件。

本节介绍进行特定Zigbee和Thread测量所需的各种RFmx测量的推荐配置。这里并没有详尽列出进行这些测量所需的所有功能,只是列出了Zigbee和Thread信号所需的特定设置。

使用RFmxDDemod测量EVM

如图3所示,LabVIEW中的RFmx随附范例 "RFmxDemod DDemod (高级)" 或C# .NET中的RFmxDemodDDemodAdvanced 解决方案提供了一个很好的起点,可以访问表3中的所有属性和更多属性来配置该测量。

NI Zigbee和Thread物理层测试解决方案

RFmx Demod LabVIEW	.NET API	推荐设置	
		BPSK	OQPSK
RFmxDemod DDemod配置调 制类型	ConfigureModulationType	PSK	
RFmxDemod DDemod配置M	ConfigureM	2	4
RFmxDemod DDemod配置PSK 格式	ConfigurePskFormat	常规	偏移QPSK
RFmxDemod DDemod配置符 号速率	ConfigureSymbolRate	300-600千符号/秒	1兆符号/秒
RFmxDemod DDemod配置脉冲 整形滤波器	ConfigurePulseShapingFilter	根升余弦	半正弦
RFmxDemod DDemod配置符 号数	ConfigureNumberOfSymbols	大于突发中的符号数*	
数字解调:信号结构	ConfigureSignalStructure	突	发

表3

使用RFmx Digital Modulation测量Zigbee和Thread信号的EVM的推荐配置

* 在配置正确的情况下, 使用突发信号结构自动检测信号突发的下降沿:

- 1. 配置触发来捕捉突发的开始。例如,使用具有适当电平的IQ功率边沿触发。
- 确保"符号数"足够大,以捕捉突发中的所有符号。驱动程序将自动找到突发的下降沿。如"符号数"大于突发中的符号数, 则只采集突发。如"符号数"小于突发中的符号数,采集过程将缩短突发。

更多信息,请查看突发信号结构帮助页面。

获取解调结果时,请确保解调OQPSK波形时使用EVM结果的偏移版本。

LabVIEW API

BPSK	OQPSK
RFmxDemod DDemod获取EVM	RFmxDemod DDemod获取偏移EVM
RFmxDemod DDemod获取星座图轨迹	RFmxDemod DDemod获取偏移星座图轨迹

表4

LabVIEW API中必需的RFmxDDemod获取VI,因调制方式而异。

.NET API

BPSK	OQPSK
FetchEvm	FetchOffsetEvm
FetchConstellationTrace	FetchOffsetConstellationTrace

表5

.NET APT中必需的RFmxDDemod获取方法,因调制方式而异。

NI Zigbee和Thread物理层测试解决方案

RFmsDemod DDemod (Advanced),vi Front I	anel "	- 0
A 30 11 Hot Anthestion for	ningow rep	I fant
🗘 🖗 🖬 Dir opportunit i a	••••••••••••••••••••••••••••••••••••••	
Recovery Manage	Modulation Type M	Carrier Measurements
E ma (au) II	9 PSK 9 4	
Selected Parts	Differential Enabled PSK Format	Mean Frequency Offset (Hz) 2.903m
SOLUCIENT	False Offset QPSK	Mean Frequency Drift (Hz) +3.350m
Center Frequency (Hz)	Symbol Rate (Hz) Samples Per Symbo	Mean Phase Error (deg) -2.79
2,4750006	1.000M Auto	
Reference Level (dBm)	Number of Symbols	
3 .5.00	Sooo Si Pean	EVM FSK Results
External Attenuation (dB)	FSK Deviation (Hz)	Maan MER (dB)
0.00	3 15.000k 31 Past	6813
	Signal Structure	
	Continuous	Mean KMS EVM (S) FIAM NAM Maximum KMS EVM (S)
Frequency Reference	Burst Start Exclusion Symbols Burst End Exclusion Sym	als Mean Peak EVM (%) 0.00 0.00 Maximum Peak EVM (%)
Frequency Source OphoardClock	3 0 3 0	Mean RMS Offset EVM (%) 0.04 0.04 Maximum RMS Offset EVM (%)
forman and the second	Synchronization	Mean Peak Offset EVM (%) 0.14 0.14 Maximum Peak Offset EVM (
1) Power Edge Enabled 1) Power Edge Level (dBrn) 3:0:00 Tigger Eddy (b) Minimum Quint Time (b) difference Quint Time (b) ensis out status code	Averaging Course g	PAA (%) PAA (%) 200- 0 200-0
source	y 3 0 0.00	Symbol Index

图3

"RFmxDemod DDemod (高级)"运行后的截图,显示了使用的配置和返回的结果。

图3显示了LabVIEW中的 "RFmxDemod DDemod (高级)" 范例,该范例在PXIe-5842上以环回方式运行,配置为OQPSK 波形。生成的波形是RFmx Waveform Creator中的范例*zigbee_o-qpsk_1000kcps_halfsine.rfws*。

使用RFmxSpecAn SEM测量功率谱密度掩码

如图4所示,LabVIEW中的RFmx随附范例 "RFmxSpecAn SEM (高级)" 或C# .NET中的RFmxSpecAnAcp解决方案提供了一个很好的起点,可以访问上述所有属性和更多属性来配置该测量。

*本节中的建议设置适用于2.4 GHz OQPSK波形:

RFmx SpecAn	.NET API	推荐设置*
RFmxSpecAn SEM配置载波集成带宽	ConfigureCarrierIntegrationBandwidth	2 MHz
RFmxSpecAn SEM配置引用类型	ConfigureReferenceType	峰值
RFmxSpecAn SEM配置偏移频率	ConfigureOffsetFrequency	开始: 3.5 MHz 停止: 10 MHz
RFmxSpecAn SEM配置偏移频率定义	ConfigureOffsetFrequencyDefinition	载波中心至测量带宽中心
RFmxSpecAn SEM配置偏移绝对限值	ConfigureOffsetAbsoluteLimit	限制模式: 耦合 限制开始: -30 dBm
RFmxSpecAn SEM配置偏移相对限值	ConfigureOffsetRelativeLimit	限制模式: 耦合 限制开始: -20 dBc
RFmxSpecAn SEM配置载波RBW滤波器	ConfigureCarrierRbwFilter	RBW自动: False RBW: 100 kHz
RFmxSpecAn SEM配置偏移RBW滤波器	ConfigureOffsetRbwFilter	RBW自动: False RBW: 100 kHz

表6

使用RFmx SpecAn SEM测量O-QPSK Zigbee或Thread信号的功率谱密度掩码的推荐配置

我们还建议使用开始触发来捕捉信号突发。具有适当电平的IQ功率边沿触发就是一个例子。

图4

"RFmxSpecAn SEM (高级)"运行后的截图,显示了使用的配置和返回的结果。

图4显示了LabVIEW中的"RFmxSpecAn SEM (高级)"范例,该范例在PXIe-5842上以环回方式运行, 配置为OQPSK波形。 生成的波形是RFmx Waveform Creator中的范例*zigbee_o-qpsk_1000kcps_halfsine.rfws*。

RFmx Waveform Creator: 生成

NI在RFmx Waveform Creator中提供了两个Zigbee波形范例。OQPSK和BPSK分别有一个范例。尽管这些配置中的所有参数都已按照标准进行了配置,但必要时仍可根据您的要求进行修改。

要访问这些范例,请转到"调制"(Modulation) > "通用"(Generic) > "PSK",如图5所示。在弹出的窗口中,选择"范例设置" (Example Settings)选项;在下拉菜单中找到以下范例:

zigbee_bpsk_300kcps_gaussian-0.4.rfws

zigbee_o-qpsk_1000kcps_halfsine.rfws

图5

RFmx Waveform Creator用户界面,可导航至PSK波形

图6

RFmx Waveform Creator中的"新建设置文件"(New Setting File) 弹出 窗口,显示两个Zigbee范例波形

这些波形可直接由RFmx Waveform Creator生成,也可保存为.tdms波形文件,通过InstrumentStudio[™]软件等其他应用程 序播放。

推荐的NI套件

硬件

866573-01B Wi-Fi和Bluetooth[®], 30 MHz至8 GHz, 1 GHz带宽, 9插槽机箱, 控制器

该解决方案基于该套件中包含的PXIe-5842。还可提供其他选项。请联系NI销售代表,了解更多信息或进行订购。

图7

套件中包含的PXIe-5842矢量信号收发仪。

软件

上述测量所需的软件都是RFmx的组成部分。

上述EVM测量需要RFmx Digital Modulation许可证。上述频谱测量需要RFmx SpecAn,但该软件无需购买许可证。

NI Zigbee和Thread物理层测试解决方案

相关链接

RFmx Demod用户手册(LabVIEW API文档)

RFmx Demod .NET帮助文档

RFmx SpecAn用户手册(LabVIEW API文档)

RFmx SpecAn.NET

Emerson、Emerson Automation Solutions或其任何关联实体均不对任何产品的选择、使用或维护承担任何责任。正确选择、使用和维护任何产品的责任 完全由购买者和最终用户承担。

NI、National Instruments、ni.com、LabVIEW和InstrumentStudio是Emerson Electric Co.测试和测量业务部门旗下一家公司的商标。Emerson和 Emerson徽标是Emerson Electric Co.的商标和服务商标。Zigbee由连接标准联盟(Connectivity Standards Alliance[™])开发。该品牌、相关徽标和标志均 为连接标准联盟的商标,为连接标准联盟版权所有。Thread Group、Thread、Built on Thread和Thread Certified Component文字商标和徽标是Thread Group在美国和/或其他司法管辖区的注册和/或未注册商标和服务商标。Bluetooth*文字商标为Bluetooth SIG, Inc.的注册商标。所有其他商标均为其各自 所有者的财产。

ĬЩ

本出版物的内容仅供参考,尽管已尽力确保其准确性,但不应将其解释为对本出 版物所述产品或服务或其使用或适用性的明示或暗示的担保或保证。所有销售 均受我们的条款和条件约束,可应要求提供。我们保留随时修改或改进此类产 品的设计或规范的权利, 恕不另行通知。

\mathbb{X}	Twitter.com/NIglobal
\triangleright	Youtube.com/@NIGlobalYoutube
େ	

Linkedin.com/company/niglobal/

(骨) Facebook.com/NationalInstruments

NI 11500 N Mopac Expwy Austin, TX 78759-3504