
Integrating the Internet into
Your Measurement System

DataSocket Technical Overview

1

Introduction
The Internet continues to become more integrated into our daily lives. This is particularly
true for scientists and engineers, because designers of development systems view the Inter-
net as a cost-effective worldwide standard for distributing data. Today, National
Instruments customers can easily publish data from their programs to the Web using the
LabVIEW and LabWindows/CVI Internet tools. With these Internet tools, programmers
create applications that serve images of the front panels of their applications as Web pages
with very little or no programming. Passing images over the Internet is easy; however,
many users are looking for more interactive solutions in which users can actually control
experiments remotely using a Web browser. Users also want to maximize performance,
which often means passing raw data values rather than large images. Improving the perfor-
mance of Web applications is possible, but only with specialized networking or Internet
programming experience.

National Instruments now offers DataSocket, a new Internet programming technology that
simplifies data exchange between computers and applications. With DataSocket, program-
mers can efficiently pass raw data over the Internet and respond to multiple users without
the complexity of low-level TCP programming.

Why DataSocket? The Background
Getting all your hardware and software components linked together has always had a few
challenges. For example, hooking up the hardware requires consideration of signal levels,
impedance, etc. Software has its own set of challenges. A good example is porting data into
and out of applications. First, you must measure the raw data, which is done using tools
such as high-performance libraries for instrument control and data acquisition. Second, you
must communicate between programs using another set of technologies. Some applications
simply save results to a file, others may use custom TCP/IP networking solutions, DDE, or
ActiveX. Each I/O mechanism has its own issues and requires certain expertise to
implement.

DataSocket, a technology that is part of the National Instruments measurement suite, is a
single, easy-to-use interface that provides easy access to several I/O mechanisms without
entangling the end user in the low-level details. It pulls together established communication
technologies for measurement and automation in much the same way that a web browser
pulls together different Internet technologies into one easy-to-use tool.

Broadcasting Data – A Simple Example
National Instruments tools make it easy to configure a stand-alone measurement system.
Now let’s take the next step. Suppose you want to share the measurements with several
machines. A typical scenario is a college lab where one machine controls the experiment
while several students do their own real-time analysis from individual workstations. His-
torically, to do this you would have turned to the TCP library to distribute the data. While
these libraries can solve the problem, there are several steps to complete:

• Pick a TCP/IP port number (and hope it is not in use by any other apps on the system)

• Define the protocol (e.g. what gets sent when)

• Configure the Server to listens on selected port and create connection when client ini-
tiates request.

2

• Configure the Server to flatten the data and writes to all connections.

• Manage any errors

• Configure the Client applications to connect to the selected port, unflatten the data, and
display it.

This is only an overview, but already you find several details that most developers would
rather not have to deal with. Of course, when you make changes to the server, such as
adding a new data item, you have to fix all the clients as well. With enough work, you can
make a very robust implementation, but you have added a lot of code to your simple
program.

To perform the same task using the DataSocket technology you perform two basics steps:

• Open a datasocket connection using a name you choose to identify the data.

• Write data to that connection as you compute new results

In this case, the low-level TCP/IP programming has been done for you.

Measurement Specific
DataSocket technology was designed from the ground up to meet the needs of measurement
and automation engineers. For example, with TCP/IP you have to write code to convert
your measurement data to an unstructured stream of bytes in the broadcasting application,
as well as code to parse the stream of bytes back into its original form in subscribing appli-
cations. DataSocket, however, transfers data in a self-describing format that can represent
data in an unlimited number of formats, including strings, scalars, Booleans, and wave-
forms. The DataSocket read and write operations transparently convert your measurements
to and from the underlying byte streams for you, eliminating the need to write complicated
parsing code. Furthermore, using the DataSocket data format, you can associate user-defin-
able attributes with data. For example, you might associate a time stamp with a temperature
measurement, or a sampling rate with an array. DataSocket greatly simplifies working with
measurement data.

A URL to Any Data Source
Before you can go much further, it is important to understand briefly how DataSocket
connects to different I/O technologies. It all starts with how you name the device or
resource you are transferring data to or from. Typically an I/O library will have a ‘Open’
function to which you pass a name or number to identify the source you want to read from
or write to. For file I/O, the resource name is a file path, for TCP/IP there are two parts to
the name – a machine name and port number. With DataSocket the resource name is in the
form of a URL (uniform resource locator) much like the familiar web address used by a web
browser. Consider how a web browser would interpret the URL
http://www.natinst.com/datasocket. It tells the browser to use the TCP/IP-based protocol
called HTTP (hyper text transfer protocol) to connect to the machine named
www.natinst.com and to fetch the web page named datasocket. The URL is different from
the names used by most I/O technologies in that it not only defines what you are interested
in, it also indicates how to get it. The “how” encoded in the first part of the URL is called
the access method or protocol. Web browsers typically use several access methods, such as
HTTP, HTTPS (encrypted HTTP), FTP (file transfer protocol), and FILE (for reading files
on your local machine). Of course, you don’t usually care how the page is loaded, you just

3

want to see it! DataSocket takes the same approach for measurement data. For example, in
the data sharing example described above, DataSocket could have used the following URL
to connect to a data item: dstp://mytestmachine/wave1
The “dstp” in the front tells DataSocket to open a data socket transfer protocol connection
to my test machine and fetch a signal called wave1. Had the URL started with “file,” the
data would have been fetched from a file instead of the DataSocket server.

Several subsequent examples in this document show in more detail how DataSocket com-
bined with the protocols it uses can solve common but challenging measurement and
automation integration tasks.

What is DataSocket?
DataSocket, a new programming technology based on industry-standard TCP/IP, simplifies
live data exchange between different applications on one computer or between computers
connected via a network. Although a variety of different technologies exist today to share
data between applications, such as TCP/IP and DDE, most of these tools are not targeted
for live data transfer. DataSocket implements an easy-to-use, high-performance program-
ming interface designed for sharing and publishing live data in measurement and
automation applications.

DataSocket consists of two pieces – the DataSocket API and the DataSocket Server. The
DataSocket API presents a single interface for communicating with multiple data types
from multiple languages. DataSocket Server simplifies Internet communication by manag-
ing TCP/IP programming for you.

Acquisition
Application

LV, CVI, VB

Data Socket
Data Server

Web
Browser

4

Commonality – DataSocket API
DataSocket is a single, unified, end-user API based on URLs for connecting to measure-
ment and automation data located anywhere, be it on a local computer or anywhere on the
Internet. It is a protocol-independent, language-independent, and OS-independent API
designed to simplify binary data publishing. The DataSocket API is implemented as an
ActiveX control, a LabWindows/CVI C library, and a set of LabVIEW VIs, so you can use
it in any programming environment.

The DataSocket API automatically converts the user’s measurement data into a stream of
bytes that is sent across the network. The subscribing DataSocket application automatically
converts the stream of bytes back into its original form. This automatic conversion elimi-
nates network complexity, which accounts for a substantial amount of code that you must
write when using TCP/IP libraries.

Learning the DataSocket API is simple. It consists of four basic actions (open, read, write,
and close) that are similar to standard file I/O calls. You can use the same DataSocket API
in your programs to read data from:

• Data items on HTTP servers

• Data items on FTP servers

• Local files

• Data items on OLE for Process Control (OPC) servers

• Data items on DSTP servers

Broadcasting Live Data – DataSocket Server
The DataSocket Server is a lightweight, stand-alone component with which programs using
the DataSocket API can broadcast live measurement data at high rates across the Internet
to several remote clients concurrently. DataSocket Server simplifies network TCP pro-
gramming by automatically managing connections to clients.

Broadcasting data with the DataSocket Server requires three “actors” – a publisher, the
DataSocket Server, and a subscriber. A publishing application uses the DataSocket API to
write data to the server. A subscribing application uses the DataSocket API to read data
from the server. Both the publishing and the subscribing applications are “clients” of the
DataSocket Server. The three actors can reside on the same machine, but more often the
three actors run on different machines. The ability to run the DataSocket server on another
machine improves performance and provides security by isolating network connections
from your measurement application.

5

The DataSocket Server restricts access to data by administering security and permissions.
With DataSocket, you can share confidential measurement data over the Internet while pre-
venting access by unauthorized viewers.

In essence, DataSocket Server is an easy-to-use, general solution to TCP/IP programming
that replaces users’ commonly written, home-grown networking code.

Applications Using DataSocket
Because DataSocket is a general-purpose programming tool for enhancing measurement
applications, it can be used in a variety of different applications. Some example applica-
tions follow.

Building an Interactive Student Laboratory
Imagine a college signal-processing laboratory. Next week is the first day of class, and you,
the professor, must prepare a laboratory experiment that introduces the students to signal
analysis. The lab has 30 student workstations, all networked to the lab server. You want to
demonstrate the fundamentals of analysis by acquiring and analyzing a signal on one of the
student machines and then broadcasting it across the network to the rest of the student

Publisher

DataSocket Server

Subscribers

LabVIEW Application

Web Page

6

computers, so the students can see the effects of signal analysis without the need to acquire
data on each machine.

You have already written an application that acquires and publishes data using DataSocket.
You are now challenged with disseminating the data to the rest of the students. You decide
to use the Web browser as a vehicle for displaying the live data. To build the Web page,
you use Visual Basic to build a user interface and convert it to an HTML document. You
can view an example Web interface on the previous page.

You use ComponentWorks DataSocket to read the data published to the server. Reading
data from a DataSocket server consists of three easy steps: 1) open a session to the DataS-
ocket server using the DataSocket ActiveX control, 2) read item from the DataSocket
Server, and 3) close your DataSocket connection when your application is terminated. The
figure below illustrates how to read data using ComponentWorks and Visual Basic.

With DataSocket, you can view data from anywhere on a network or on the Internet. You
can write applications that read information from a network or Internet with little or no
coding. In this example you saw how to create a Visual Basic application for reading from
a DataSocket server. For more information on how to build an interactive Web application,
similar to the example described, see Application Note 127, Building an Interactive Web
Page with DataSocket.

Using DataSocket to Monitor Process Variables
Imagine a cookie factory that makes several different types of cookies. Each type of cookie
has its own production line, and each line has a computer that monitors the process vari-
ables. You are a systems engineer chosen to write a LabVIEW application that
continuously monitors each of the process variables. Your application writes the live data
to the central office over the local network. A computer in the central office gathers data
and displays a live summary by production line and by process variable so that factory man-
agers have an up-to-date picture of how the factory is performing.

Internet

Data
Acquisition
Application

DataSocket
Server

Student
display

Student
display

Student
display

7

Without DataSocket, you would have to write a TCP/IP server and client application to
transfer the data from the factory floor to the central office. The server application would
acquire the process data, flatten the data into a bit stream, and transfer the data to the server.
The server reads the data, unflattens the data, and displays the data. In addition to the code
required to read information from the server, the client application must also contain the
code required to manage multiple connections, one connection for each process line. Writ-
ing all the low-level TCP/IP code to handle such data transfers would add a significant
amount of overhead to the development process.

With DataSocket, you can easily handle the network communication required to move data
from the factory floor to the central office. The sample LabVIEW block diagram below
illustrates how to write and read process variable data using the DataSocket API. Because
data is being written to a DataSocket server, the central office application does not need to
implement extra code to handle the extra connections of multiple production lines. It simply
reads the data item for each line.

This example illustrates how to broadcast data over a local network. You could expand
upon the cookie scenario by passing process control information from the central office
back to the production lines. Because DataSocket communication can span either a network
or the Internet, the central office can be located either in the same building or halfway
around the world.

Live Excel Reports
Imagine a company that produces 500,000 cellular telephones per month. You are the lead
test technician and, your boss has just called from the UK and notified you that he needs
updated production statistics for a meeting on Monday.

You are familiar with Excel and have developed small macros for generating reports in the
past. Usually, generating such reports is not a problem, but time is short. You decide to
create an Excel spreadsheet that can connect over the Internet to live production data. With
the new spreadsheet, your boss can open the spreadsheet with his laptop, connect to the
Internet, and press the UPDATE button to download the most recent production data. Now,
whenever your boss needs an updated view of the system, he simply uses the Excel spread-
sheet you created for him.

8

The spreadsheet is implemented using ComponentWorks DataSocket ActiveX controls.
Because Excel macros are programmed using Visual Basic for Applications, you can copy
many of the ComponentWorks examples directly into macros for use in Excel. By entering
the URL to connect to the DataSocket server of the test machine, you are able to share your
confidential test data over the Internet preventing access by unauthorized viewers.

Field Testing over the Internet
Imagine a New York City office equipment supplier who leases and maintains photocopi-
ers. The company carries many different models of copiers and is continually adding more
models to meet growing customer demands. Each technician in the company’s field service
group is armed with a laptop and a number of procedures for diagnosing and repairing copi-
ers. The problem is that as the supplier continually adds more models of copiers, the field
service group continually needs to be supplied with more diagnostic procedures. The office
supplier is looking for a solution to optimize the field service group’s ability to diagnose
and repair copiers.

You are a measurement system solutions provider tasked with the responsibility of design-
ing a mobile diagnostics application for the supplier’s field service group. Your solution
consists of moving all of the diagnostic procedures back to a single server in the central
office where they easily can be kept up to date as well as readily accessed by field service
agents using wireless modems attached to their laptop computers. You have designed a
LabWindows/CVI application that interfaces with the copiers through a serial port and a
data acquisition card. This application requests copier model information from the field ser-
vice agent and sends the information back to the central office’s DataSocket Server using
the LabWindows/CVI DataSocket API. During test execution, your LabWindows/CVI
application acquires data from the copier and sends it back to the DataSocket Server. The
central office program determines which diagnostic test to run based upon the copier model
supplied. TestStand, a test sequence manager, runs the diagnostic procedures from the cen-
tral office. TestStand reads the DataSocket Server and uses the data passed from your
application to carry out the diagnostic test. Once the test is complete, TestStand writes diag-
nostic information to the DataSocket Server. Your LabWindows/CVI application then
reads the data from the server. The field service agent uses this information to repair the
copier.

In the screen below, the LabWindows/CVI code illustrates three basic operations of DataS-
ocket – Open, Read, and Close. Notice that the Open Connection function references the
callback DS_callback_read function. When the data is updated at the DataSocket
Server, LabWindows/CVI is notified and the DS_callback_read function is invoked.
This event-driven architecture simplifies communicating with other applications.

9

Because the company moved all photocopier diagnostic procedures back to the central
office, the field service technician no longer has to maintain any diagnostic routines. The
company can now add new models without needing to update field computers. By using
DataSocket, you did not need to implement TCP/IP programming to implement multipoint
communication via a network. You were free to spend your time organizing and imple-
menting your test application.

Measurement Communication for the Masses
DataSocket simplifies live data broadcast across the Internet. DataSocket makes it easier to
exchange measurement data over the Internet, so you can concentrate your efforts on the
design of your distributed measurement system. For more information on DataSocket, visit
the DataSocket Website at www.natinst.com/datasocket.

How Do I Get DataSocket?
DataSocket is available for LabVIEW, LabWindows/CVI, and ComponentWorks.
DataSocket is included with LabVIEW 5.1 and ComponentWorks 2.0. DataSocket for
LabWindows/CVI is available via download from the DataSocket Web site,
www.natinst.com/datasocket.

© Copyright 1998 National Instruments Corporation. All rights reserved.
Product and company names listed are trademarks or trade names of their respective companies.

6504 Bridge Point Parkway • Austin, TX 78730-5039 USA
Tel: (512) 794-0100 • Fax: (512) 794-8411 • E-mail: info@natinst.com

