MATRIXy

/0

GETTING STARTED GUIDE

WINDOWS VERSION

A WindRwver

Copyright 0 2000 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the prior
written permission of Wind River Systems, Inc.

AutoCode, Embedded Internet, ESp, Fast], IxWorks, MATRIXy, pRISM, pRISM+, pSOS, RouterWare,
Tornado, VxWorks, wind, WindNavigator, Wind River Systems, WinRouter, and Xmath are registered
trademarks or service marks of Wind River Systems, Inc.

BetterState, Doctor Design, Embedded Desktop, Envoy, How Smart Things Think, HTMLWorks,
MotorWorks, OSEKWorks, Personal JWorks, pSOS+, pSOSim, pSOSystem, SingleStep, SNiFF+, VxDCOM,
VxFusion, VXMP, VxSim, VxVMI, Wind Foundation Classes, WindC++, WindNet, Wind River, WindSurf,
and WindView are trademarks or service marks of Wind River Systems, Inc. This is a partial list. For a
complete list of Wind River trademarks and service marks, see the following URL:

http://www.windriver.com/corporate/html/trademark.html

Use of the above marks without the express written permission of Wind River Systems, Inc. is prohibited.
All other trademarks mentioned herein are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): 800/545-WIND
telephone: 510/748-4100
facsimile: 510/749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

MATRIX Getting Started Guide, Windows Version 7.0
Edition 1

16 Nov 00

Part #: 000-0119-006

Contents

Introduction: The MATRIX y Product Familycccoocviiiiiiiiiiicc i, 1
1.1 XINATI 1ot ettt e ete e e aeeeaaeenne 3
12 SystemBuUildooviii 3
1.3 AULOCOAE ettt ettt et e et e e e etee e aeeeaaeenne 4
14 DoCUMENEIE ..o e 4
15 REAISIIMN vt ettt et ettt eeteeeaeeeaaeeane 4
1.6 Using This Manual ..o 5
MATRIXy Publications, Online Help, and Customer Supportcccceeens 7
2.1 Online and Printed Book Conventionsc.ccoceevveeieeiieecieeeieeciee e 8
2.1.1 Font CONVENTIONS ..ccoveeeveeeiieiiecieeeiee ettt ettt eeteeeeaeeeteeeaeeeane e 8
2.1.2 Format CONVENIONScoouviiviiiiieciie ettt ettt eveeeaae e 9
213 Symbol Conventions ... 10
2.1.4 Mouse CONVENTIONS ...ccveeivieireiiiieeiieeteeetee et eeteeeereeeteeeeaeesaeeeeseeesaeeens 11
215 Note, Caution, and Warning Conventionsc.cccoeeerriurunnnnen. 11
22 Using Online BOOKScoouoiiiiiii 12

fii

23

24

25

2.6

2.7

2.8

29

2.10

MATRIXy 7.0
Getting Started Guide

221 Viewing, Printing, and Searching PDF Filescccccccooooeeiai. 12
Using Acrobat Reader ... 12
Pasting Text Into Other Applicationsc.cccocoeeieiiiiiiiciiiiinne 13
ATTENTION: Copy and Paste Known Problem 13
Printing DOCUMENtScccoviiiiiiiiiiiiiiiic 14
Find and Search in PDF ... 14
ATTENTION: Known Search Index Problemcccccccooeeee 15
MATRIXy Installation GUidescccoociiiiiiiiiiiniiiiiiiccce 16
MATRIXy Getting Started Guide and Master Indexcccoceeiirnan. 16
Xmath BOOKSccoviiiiiiiiiiiiiiiccccccc e 17
SystemBuild BOOKSoouoiiiiiii 18
AutoCode and Documentlt BOOKScocooueiiiiiiiiiiii 20
RealSim BOOKScccovviiiiiiiiiiiiiciiiiciccccc e 20
Using Online Helpc.cooiiiiiii 21
29.1 Starting the Online Help ..o, 21
Multiple Navigators ... 22
Common Startup QUEeStionscccceevviirieiiiiiicece 22
29.2 Using the MATRIXx Help WIndowc.cccooiiiiiiiiiiiii, 23
Help Window Layout ... 23
29.3 Navigating Between TOpicscccoceeiereieiiiiiiiiiiiiii, 24
Topic GIOUPINGS ..cocvvieieiiiiiccie s 25
29.4 Finding Specific Help TOPiCSccceovrviiieiiieiiieiiciccc 25
29.5 Using Help Examplescccooooiiiiiiiiiciiccecc 26
29.6 Using Context-Sensitive Help ..o 26
29.7 Using MATRIXy Help with Different Versions of Navigator 27
4. X Navigator Commandsc.cccceeeiiiiniiiiiieeeenes 27
Navigator 3.X Commandscccccoeerueiiiiiirieiiiiiiceccee 28
MATRIXy Release INformationcceceeeeeirieieeininieienneeeeeeeeeienenenes 29

3.2

3.3

34

3.5

Contents

MATRIXy Customer SUPPOTItcoouiiiiiiieiee 29
.. 31
Introduction to Xmath ... 31
311 Data Handling ..o 31
3.1.2 Numerical ANalysis ..o 32
313 MathScript ..o 32
Getting Started in Xmath ... 33
3.2.1 Directories Defined by Environment Variablesc.c..c........... 33
3.22 Setting Your Display Colorsccccooiiiieiiiiiiiiiicccc 34
3.23 Starting Xmath ..o 34
3.24 The Xmath Commands Windowcccoooiiiiiiiic, 34

Menu ChOICeSc.cvviieriiiic s 36

Command Window Executionc.c.ccooeeiiiiiiiiiii 36
325 Running DemoOScccoeiiiiiiiiiiiiiiiiiiiniiisis 37
326 Accessing Online Helpccocooiiiiiiiii 37
3.2.7 Stopping Xmath ... 37
Performing Sample Xmath Tasksccccoceuvrieiiiiiiniicice 38
331 Creating Datacoooeuiiiiiiii 38
332 Getting to Know Objectscooriiiiiiniiiiic 39
3.3.3 Saving, Loading, and Printing Datac.ccoooeiiiiiinc 40

GIaphiCS ..eoeviiicici s 41

Printing Graphsccooooeioiiiiiiicc 41
MathSCript coooviie s 42
The Xmath Debuggerccooiiiiii 43
3.5.1 Starting the Debugger ..o 43
3.5.2 Using the Debuggerccoooviiiiiiiiiiicc 44
3.5.3 Exiting the Debugger ... 44

MATRIXy 7.0
Getting Started Guide

3.5.4 Correcting Errors During Debuggingcccooooeviiiiiiiinnnan. 46

3.6 Xmath PLOHNG ..o 46

3.7 Exploring Additional TOPIiCScccocomueiiiiiiuiieiiiiicec 46
SYSIEMBUII ... —————— 47

4.1 Introduction to SystemBuildcoooeiiiiii 48

411 Catalog BIOWSETcoviiiiiicc 49

412 SuperBlock EditOroooiiiiiiiiiiii 50

413 SystemBuild Palette BrowSsercccooooviiiiiiiiiiic 51

414 SystemBuild Simulator ... 51

415 Two- and Three-Button Pointing Devicesccccoceviiiiriiiiininnn, 52

41.6 Specifying an ASCII Text Eitorccooveviiiiiieiiiiiiciccnns 52

417 SystemBuild Optional Modulesccccooooiiiiiiiiii 53

Fuzzy Logic BIOCK ..o 53

Neural Network Module ..o 53

State Transition Diagram Block ..o 53

4.2 Starting and Exiting SystemBuild ..o 53

Starting SystemBuildcooiiii 54

Exiting SystemBuildcoooiii 54

4.3 Basic SystemBuild Taskscccooviiiioiii 54

43.1 Creating a New SuperBlock ..o, 55

432 Creating a New Block in a SuperBlock ..o, 56

433 Loading a Model Fileccocoooiiiiiiiii 57

434 Opening a SuperBlock in the Editor ..ol 58

435 Simulating the Model from the Xmath Commands Window 60

43.6 Deleting a SuperBlockcooiiiiiii 62

4.3.7 Navigating a SuperBlock Hierarchy ..., 63

Navigating with the Catalog Browsercccooeiiiiinnn 63

Vi

Contents

Navigating from the Editor Windowccccooeviniiniiniinnn, 65
438 Printing from the Editor Windowccccooooiiiiiiniis 66
44 SystemBuild Tutorial ... 67
441 Designing a Block Diagramcccccoomeieiiiiiiniiiiccce 67
The Spring-Mass Damper Model ..o 68
SystemBuild Block Basicscccooorueieiiiinieiiiicc 68
Getting Started on a Designccooeoiiiiiiii 70
442 Creating and Editing a Block Diagramcccccoceeviiiiiniinnnnns 71
Creating a SuperBIock ..o 71
Adding Blocks to the Block Diagram ..o 73
Editing Block Properties ..., 74
Connecting BIOCKSccuoiiiiieiiiii 80
Connecting SuperBlock Inputs and Outputs ..o 82
Saving a SuperBlock ... 84
443 Simulating a SuperBIOcKccooiiiiiiiii 86
444 Encapsulating a SuperBlock ... 88
EXETCISE «.evivieiiniiietccec e 94
445 Using a BetterStateChart Block to Model Events 94
Resettable Integratorcoceueveiiiciciiicc 96
Signal SWitch ... 98
Event Controller ... 100
BetterStateChart Block ..., 101
Return to SystemBuild for Final Connectionscccccccoeeininne. 111
Final EXICISE ..ccvuiuiiiiiiiiiiiicccicccccc s 114
AULOCOOE ...t 117
5.1 Generating Non-Customized Codeccooooiiiiiiniiiii 117
52 Generating Customized Code ..o 119
DOCUMENLIT .o 121
6.1 Generating Non-Customized Documentationcccccovireiiiiincennne. 121
6.2 Generating Customized Documentation ... 125

Vil

MATRIXy 7.0
Getting Started Guide

REAISIM . et aans 127
7.1 Feedback Control Systemscocmueieiiiiiciiiiicc 127
711 Conventional Designccccooeviiiiiiiiiiiiiicccccces 128
7.1.2 Rapid Prototyping ... 128
7.1.3 Other Simulations with a RealSim Real-Time Controller 129
7.1.4 Building and Testing a Feedback Control System Model 130
7.2 RealSim Controller MOdElSoooouviiieiiiiiiieeieeeeeeeeeeeeeeeeee e 132
7.3 RealSim TULOTIALS .veoieeeiiiieeeeeeeee e 132
7.3.1 Running a Demonstration Modelccccoooviiiinn. 133
Preparing a Demonstration Model ..o 134
Activating Data AcquiSition ..o, 135
Running the Demonstration Model on the RealSim Controller . 137
Using the Altia Graphics for Super_Cruise Demonstration Model
139
Acquiring Data with the Altia Interactive Animation Client 140
Run-Time Variable Editing with the Altia Clientc.......... 141
Ending the SImulationcccocoviiiiiiiiis 143
7.3.2 Building and Running a New Modelc.c.ccccoooiiiiiinne. 144
Creating a RealSim Projectccccoovviiiniiiiiiiiicccns 144
Creating the SystemBuild Model and an RTF File of the RealSim Top-
Level SuperBlock ... 146
Building the Interactive Animation Panel ... 152
Simulating the Model in SystemBuild ..o 158
Simulating the Model on the RealSim Controller 160

Viii

Introduction: The MATRIX y
Product Family

This chapter contains an overview of the MATRIX Product Family. It concludes
with a section on the organization and use of this document.

MATRIX x Product Family

The MATRIX Product Family includes the following:

Xmath — The mathematics and system analysis environment of the MATRIX
Product Family. See 1.1 Xmath, p.3.

SystemBuild — A graphical programming environment that uses a hierarchically
structured block diagramming paradigm for modeling and simulation of
linear and nonlinear dynamic systems. See 1.2 SystemBuild, p.3.

AutoCode — Template technology used to process SystemBuild model files to
produce C or Ada code. See 1.3 AutoCode, p.4.

Documentlt — TPL template technology (similar to AutoCode) used to capture
information from SystemBuild model files and then format it to create
documentation. See 1.4 Documentlt, p.4.

RealSim — Real-time software and hardware combination that enables you to do
real-time simulations of feedback control system models designed in
SystemBuild. See 1.5 RealSim, p.4.

Figure 1-1 shows product dependencies of the MATRIX Product Family.

MATRIXy 7.0
Getting Started Guide

Figure 1-1 MATRIXx Product Family Overview with Dependencies

Xmath

Design and Analysis

SystemBuild

Modeling and Simulation

Documentlt AutoCode

Documentation Software Implementation

RealSim Other

Hardware Integration
and Testing

Hardware Systems

The MATRIX Product Family core software must be installed according to the
MATRIX System Administrator’s Guide, Windows Version.

= SystemBuild users must have Xmath.
= AutoCode and Documentlt users need SystemBuild and Xmath.

= RealSim users must have AutoCode, SystemBuild, and Xmath.

1.1 Xmath

1
Introduction: The MATRIXy Product Family

The Xmath software environment facilitates system analysis and visualization.
Xmath contains over 700 predefined functions and commands, interactive color
graphics, and a programmable graphical user interface (PGUI). The MathScript
scripting language simplifies command and function programming. Object-
oriented design provides convenient data management and speeds program
execution. The structure and capabilities of Xmath are discussed in the Xmath
User’s Guide, while the Xmath online Help provides easy access to Xmath
commands and functions.

= Xmath commands support basic operations such as creating, plotting, saving,
and loading data, and accessing online Help. 3.1 Introduction to Xmath, p.31
describes the capabilities of Xmath and its modules.

= Xmath commands provide access to SystemBuild and its related products.
Xmath handles data for SystemBuild and all other products in the MATRIX
Product Family.

1.2 SystemBuild

SystemBuild visual modeling and simulation software lets you model many
kinds of systems, from control loops to complex vehicle applications. You can use
SystemBuild to prepare models that can be simulated with the SystemBuild
simulator. Built-in simulation tools let you interactively verify, test, and modify
system models.

To create a model, you can use all of the SystemBuild standard and optional
features. BetterState blocks facilitate the integration of hierarchical state transition
models. The optional Interactive Animation (IA) module or the Altia Design
module adds the ability to control your model interactively during simulation.
With IA, the icons are put in one or more picture files (.pic) while Altia images are
stored in design files (.dsn).

For additional information, see 4. SystemBuild.

MATRIXy 7.0
Getting Started Guide

1.3 AutoCode

AutoCode is an automatic code generator for SystemBuild models. The
AutoCode software processes SystemBuild model files you create and outputs
compilable ANSI C or Ada code.

The output code can be compiled to produce a stand-alone real-time executable
program suitable for running in a test-bed environment or for use in an
embedded real-time system. Advanced template programming language (TPL)
template technology provides a powerful programming capability to tailor nearly
any part of the generated code to specialized needs. For additional information,
see 5. AutoCode.

1.4 Documentlt

Documentlt is an automated documentation generator for SystemBuild models.
This module integrates documentation with SystemBuild design activity for
easier and more accurate manuals and reports. Templates are included for
FrameMaker, Microsoft Word, and WordPerfect markup formats. Using TPL, you
can capture and tailor any part of the generated document for special
documentation standards or other needs.

For additional information, see 6. Documentlt.

1.5 RealSim

The RealSim controller lets you do real-time simulations of feedback control
system models designed in SystemBuild. In this way, you can see how a
prototype will perform in the “real” world before actually building the prototype.

The RealSim environment lets you run models developed in SystemBuild in real
time, connecting to real hardware for real-time simulation, rapid prototyping, and
hardware-in-the-loop modeling. Run-time graphical user interfaces can be built to

1
Introduction: The MATRIXy Product Family

let you monitor values and change setpoints in the application running on a real-
time computer, These are done in the same manner as interactive simulations in
SystemBuild. In addition to the software tools, real-time computers with analog
and digital I/O are available to complete the RealSim environment.

For additional information, see 7. RealSim.

1.6 Using This Manual

This manual acquaints you with the MATRIXy Product Family software. It
provides an introduction to each software product and includes tutorials to assist
you in learning key tasks.

Organization

This manual is organized as follows:

1. Introduction: The MATRIXy Product Family introduces each software
product in the MATRIXy Product Family.

2. MATRIXy Publications, Online Help, and Customer Support lists the MATRIXy
Product Family publications available, describes how to use online help,
explains the conventions used in MATRIXy online and printed books, and
provides contact information for MATRIXy customer support.

3. Xmath provides an overview of Xmath and the Xmath modules, and
contains a tutorial.

4. SystemBuild provides an overview of SystemBuild and the SystemBuild
modules, and gives a tutorial that includes use of a BetterState statechart.

5. AutoCode provides an overview of the AutoCode code generator.
6. Documentlt provides an overview of the Documentlt document generator.

7. RealSim provides an overview of the RealSim real-time simulator.

MATRIXy 7.0
Getting Started Guide

Conventions

This publication makes use of the following types of conventions: font, format,
symbol, mouse, and note. These conventions are detailed in 2. MATRIXx
Publications, Online Help, and Customer Support.

MATRIXy Publications, Online
Help, and Customer Support

This chapter provides publication conventions and instructions for using
MATRIXy online books and Help. It also contains an annotated list of the online
books, and concludes with directions for obtaining release information and
customer support.

« Online and Printed Book Conventions
« Using Online Books

» MATRIXx Installation Guides

» MATRIX Getting Started Guide and Master Index
= Xmath Books

= SystemBuild Books

« AutoCode and DocumentIt Books

= RealSim Books

« Using Online Help

» MATRIXx Release Information

« MATRIXx Customer Support

MATRIXy 7.0

Getting Started Guide

2.1 Online and Printed Book Conventions

The MATRIXy online and printed books use several types of conventions: font,
format, symbols, mouse, and levels of notes. These conventions are discussed in
the sections that follow.

2.1.1 Font Conventions

Table 2-1

This sentence is set in the default text font, Palatino, which is used for general
text. Use of fonts and styles other than the standard text default is summarized in

Table 2-1:

Font Conventions

Fonts and Styles

Use

Palatino

bold Palatino

italic Palatino

Courier

bold Courier

italic Courier
italic bold Courier

Helvetica

General text. Palatino is the default text font.

Bold Palatino is used for command and function names,
filenames, directory paths, and environment variables.

Xmath commands (for example, SAVE, LOAD, SET) are
shown in uppercase, while Xmath functions are set in
lowercase (for example, random, plot, kronecker)

Italic Palatino is used for emphasis, first instances of terms
defined in the glossary, publication titles, and chapter,
section, and topic headings.

Courier is used for system output, code examples, prompt
responses, and syntax examples.

Bold Courier is used for user input (anything you are

expected to type and enter).

Italic is also used in conjunction with Courier or bold
Courier to denote placeholders in syntax examples or
generic examples.

Helvetica is used for window and dialog names, menu
selections, and named items in a window or dialog. Dialog
messages and keyboard keys are also set in this font.

2
MATRIX Publications, Online Help, and Customer Support

2.1.2 Format Conventions

Xmath output appears in Courier directly below the bold Courier input (see
Example 2-1). If the output is extremely large, continuation marks (... or :) are
used to indicate continuation, or replace missing parts.

Example 2-1 Xmath Sample Input and Output
x=random(2,6)
X (a rectangular matrix) =

0.827908 0.926234 0.566721 0.571164 ...
0.559594 0.124934 0.727922 0.267777 ...

<
ans (a rectangular matrix) =

0.827908 0.559594

0.0568928 0.988541

If the input is long, continuing lines of input are indented as shown in
Example 2-2.

Example 2-2 Sample Convention for Handling Longer Lines of Code

Sys=system(makepoly([1,-1.63,5.5],"s"),
makepoly([1,2.7,5.6,13.5,8.1],"s"))

Sys (a transfer function) =

2
s-1.63s+55

4 3 2
s+27s+56s+135s+8.1

initial integrator outputs

[eNeoNoNe]

MATRIXy 7.0
Getting Started Guide

Input Names

Output 1

System is continuous

2.1.3 Symbol Conventions

Table 2-2

Symbols used in this manual include those shown in Table 2-2:

Symbol Conventions

Symbol Use

% UNIX® operating system prompt for C shell. Xmath input shows no prompt (as
you will usually be typing in the Xmath Commands window command area).

$ UNIX operating system prompt for Bourne and Korn shells.

{} Braces denote optional arguments or keywords in Xmath syntax. For example:

[out1,out2]=fun(inl,in2{in3,keywords})

[Brackets indicate that the enclosed information is optional. The brackets are
generally not typed when the information is entered.

| A vertical bar separating two text items indicates that either item can be
entered as a value.

- Hierarchical menu selections are indicated with arrows:
In the Xmath main menu select File — Load to load a model or demo.

The arrow is also used to specify hierarchical structure in the online Help
Topics Hierarchy pane, and in the topics index:
See the MATRIXy online Help plot - linestyles topic.

10

2
MATRIX Publications, Online Help, and Customer Support

2.1.4 Mouse Conventions

Table 2-3

This document assumes you have a standard, right-handed 2- or 3-button mouse.
From left to right, the buttons are referred to as MB1, MB2, and MB3 for a right-
hand mouse definition; these buttons are right to left for a left-hand mouse
definition. For workstations with a two button mouse, MBI is the left button and
usually the right button behaves as MB3.

All instructions assume MB1 unless otherwise noted. Some common mouse
instructions are shown in Table 2-3:

Common Mouse Instructions

Instruction Use

click Press, then quickly release MB1.

double-click Rapidly click MBI twice.

drag Hold down MB1 while moving the mouse; release the button

when the desired result is obtained.

The following mouse-click combinations are useful for selecting text:
= To select a word, point anywhere within the desired word and double—click.
= To select an entire line, point anywhere on the line and triple-click.

« Toselect all text in an Xmath window area, move the cursor into the area and
quadruple-click.

2.1.5 Note, Caution, and Warning Conventions

>

Within the text of this manual, you may find notes, cautions and warnings:

NOTE: Note indicates information that emphasizes or supplements important
points of the main text. A note may supply information that applies only in special
cases, or details that apply only to specific releases of the product.

CAUTION: Caution advises that failure to take or avoid a specific action could
result in loss of data.

WARNING: Warning advises that failure to take or avoid a specific action could
result in physical damage to the user or hardware.

11

MATRIXy 7.0
Getting Started Guide

2.2 Using Online Books

The MATRIXy CD-ROM contains software, documentation in PDF format, and a
copy of Adobe® Acrobat® Reader with Search. With Acrobat Reader you can
view, search, and print any document on the MATRIXy CD-ROM.

Using Online Books describes viewing, printing, and searching the online PDF
files.

If you do not already have Acrobat Reader with Search installed, see the
MATRIXy, System Administrator’s Guide, Windows Version for installation details.
The Search feature provides a full-text search across all documents on the
CD-ROM. If you don’t have the Search capability, we recommend that you install
the version provided on the MATRIXy CD-ROM.

To determine whether your copy of Acrobat Reader includes Search, start it, and
examine the toolbar (select Window — Show Tool Bar if the toolbar isn’t visible). If
Search is installed, the toolbar ends with the four search buttons shown in Find
and Search in PDF, p.14.

2.2.1 Viewing, Printing, and Searching PDF Files

To view the documentation, launch Adobe Acrobat Reader with Search (version
3.0 or higher); then open the file welcome.pdf. If you do not have Acrobat on your
system, see the MATRIXx System Administrator’s Guide, Windows Version for
installation details.

The welcome.pdf file is an overall table of contents for PDF documentation on the
CD-ROM. Click any document title to open that document.

Using Acrobat Reader

Each document has a “bookmarks” pane displayed on the left.

All bookmarks and blue text are hypertext links. To follow a link, be sure the hand
tool is selected; then click the bookmark or blue text.

12

2
MATRIX Publications, Online Help, and Customer Support

Use the following Acrobat toolbar buttons for browsing and navigation:

Hand tool: click a link to jump there; click and First Last Go to
drag to move page in window page page previous view

Select
— ot 14| «|» o] <]
Click to enlarge Previous Next Goto
Control-click to reduce page page next view

Select Help — Reader Guide for a detailed description of all Acrobat capabilities.
Bookmarks can contain the following links:

» Welcome: Link to the Welcome screen.

« Document Title: Link to the cover of the current document.

» Contents: Link to the Table of Contents for the current document.

= Chapter and Section Bookmarks: Links to chapters and sections in the
document.

= Aright-pointing triangle in front of a bookmark means there are sub-
bookmarks; click the triangle to expand to lower-level bookmarks.

=« Index: Link to the Index of the current document if one exists.

Pasting Text Into Other Applications

To copy examples or text from a PDF document into an application, first click
Tools - Select Text, or click the abc button. Select the text, and then use the usual
technique on your platform to copy and paste the text into the target application.

ATTENTION: Copy and Paste Known Problem

In some cases, example text can contain special typeset characters, such as a non-
breaking space, or special left- or right-facing delimiters (“_", ‘_’), etc., that will
not be properly parsed when pasted into an application. If you receive an error
message, retype the special characters, and the input will be processed. The
following string is an example:

plot(a,b, { xlab = “label_string” })

13

MATRIXy 7.0
Getting Started Guide

If the application does not understand the paired double quotes (“_") you need to
retype them so the input contains straight quotes:

plot(a,b, { xlab = "label_string" })

Printing Documents

To print a file, select File - Print and then specify the desired pages. Note that the
PDF page numbers appearing at the bottom of the Acrobat screen count every
page, including the cover, the table of contents, and so forth. Be sure to use these
page numbers (rather than the document page numbers) when printing a range of

pages.

NOTE: You must print PDF files on a PostScript printer.

Find and Search in PDF

Search dialog Previous hit

Find a word in the

current document ___ ﬂl ﬁlﬁl.‘l |

Search Results Llst Next hit

The Acrobat Reader Find feature locates words or word phrases in the current
PDF document.

To use Find, click the plain binoculars on the toolbar, or select Tools - Find.

To make a full-text search over all documents on the CD-ROM, use the Search
tool. Click the binoculars overlaid on a document on the toolbar, or select Tools -
Search. In the Search dialog, enter the word or phrase you want to find, select
options as desired, and then click Search. Search displays a Search Results List
dialog of documents containing the term. Click any document in the list to open
it. All instances of the term on the first page on which it occurs are highlighted.

To find the next or previous occurrence, click the Next or Previous hit buttons on the
Acrobat toolbar. To return to the Search Results List dialog, click on the Search
Results List button.

The Search command includes powerful features for expanding a search using
automatic word-stemming, a thesaurus to find synonyms, and a “sounds like”

14

2
MATRIX Publications, Online Help, and Customer Support

feature. You can also use wild cards in terms, control case matching, and include
Boolean connectives.

For further details on Search, select Help - Plug-In Help - Using Acrobat Search to
read the online guide.

ATTENTION: Known Search Index Problem
The Search feature uses a search index file. When you open welcome.pdf or any
other document, Acrobat automatically “attaches” the required index file.

Acrobat sometimes attaches the index file more than once. Then, the Search
Results List dialog contains the same document multiple times. The workaround is
as follows:

1. Raise the Search dialog; then click the Indexes button.

2. Remove all indexes by selecting each index in turn and clicking the Remove
button. When you remove the final index, you are warned that you won’t
have any indexes; click OK. Close the dialog.

3. Exit and restart Acrobat; then re-open the welcome.pdf file.

15

MATRIXy 7.0
Getting Started Guide

2.3 MATRIX y Installation Guides

The following documents provide instructions for installing the MATRIXy
Product Family software:

System Administrator’s Guide, Windows Version — Describes proper setup of a
PC running Windows 98 or Windows NT® for the installation of MATRIXj
software products.

FLEXIm End User Manual — Describes FLEXIm from the end-user perspective. It
explains how to use the command-line tools that are part of the standard
FLEXIm distribution.

RealSim AC-1000 Controller Installation Guide — Describes how to install
RealSim software for an AC-1000 controller on both the host and target
computers; describes the new features incorporated into RealSim 6.X,
provides instructions for updating existing projects to RealSim 6.X, and
provides some configuration notes.

RealSim PC Controller Installation Guide — Describes how to install RealSim
software for PC controllers, such as AC-104 and PCI_Pro, on both the host
and target computers; provides instructions for updating existing projects to
RealSim 6.X and some configuration notes.

2.4 MATRIX x Getting Started Guide and Master Index

The following MATRIXy documents provide help for getting started with basic
tasks and for finding the information you need.

MATRIXx Getting Started Guide, Windows Version — Describes the MATRIXy

Product family and provides an introduction to basic tasks and tutorials for
using MATRIXy software on the Windows platform.

16

2
MATRIX Publications, Online Help, and Customer Support

Core Documentation Master Index — The MATRIXy Core Documentation suite
includes the MATRIXy Getting Started Guide, and all Xmath, SystemBuild,
Autocode, and DocumentlIt books. This document indexes all of the Core
Documentation suite except Interactive System Identification Module, Part 2, and
XU Module.

2.5 Xmath Books

Xmath software is documented in the Xmath User’s Guide (formerly Xmath Basics)
and in manuals for each optional Xmath module.

Xmath User’s Guide — Describes Xmath structure and concepts. It provides a
tutorial, covers basic features for general Xmath use, and describes advanced
Xmath features such as creating a GUI, creating your own MathScript
commands, functions, or objects, and linking external programs.

Control Design Module — Explains the use of the Control Design Module
including Linear system representation, building system connections, system
analysis, classical feedback analysis, and state-space design. It describes each
function in the Control Design Module.

Interactive Control Design Module — Describes how to use the Interactive
Control Design Module (ICDM), which is a tool for interactive design of
continuous-time, single-input, linear time-invariant controllers. ICDM uses
the Xmath programmable graphical user interface (PGUI or GUI).

Interactive System Identification Module, Part 1 — Describes the Interactive
System Identification Module (ISID), which includes system identification,
model reduction, and signal analysis tools for identification of linear, discrete
time, and multivariable systems.

Interactive System Identification Module, Part 2— Focuses on a special
interactive graphical interface for ISID commands that further simplifies
system identification. Various graphical comparison tools allow you to try
different identification and validation methods. This interface also supplies
plots useful for system identification with the touch of a button.

17

MATRIXy 7.0
Getting Started Guide

Model Reduction Module — Describes the model reduction module (MRM), a
collection of tools for reducing the order of systems.

Optimization Module — Describes nonlinear, quadratic, and linear optimization
functions.

Robust Control Module — Describes the robust control module (RCM), a
collection of analysis and synthesis tools that assist in the design of robust
control systems.

XU Module — Describes Xmath functions used for modeling, analysis, and
synthesis of linear robust control systems.

2.6 SystemBuild Books

The SystemBuild manuals consist of the SystemBuild User’s Guide and a number of
other manuals for SystemBuild blocks and modules.

SystemBuild User’s Guide — Describes how to use SystemBuild, the graphical
modeling and simulation environment, to construct a model for a dynamic
system. SystemBuild lets you create custom building blocks, hierarchically
organize model subsystems into SuperBlocks, and run system simulations
based on the models.

Aerospace Models — Describes libraries of SystemBuild models that were written
for the aerospace industry.

BetterState User’s Guide — Describes how to use BetterStateChart blocks for
modeling complex event, state, and transition information.

BlockScript User’s Guide — Describes how to write instructions in the

BlockScript language. BlockScript is used in SystemBuild with both
BlockScript blocks and BetterStateChart blocks.

18

2
MATRIX Publications, Online Help, and Customer Support

FuzzyLogic Block — Describes how to use the SystemBuild Fuzzy Logic Block to
obtain fuzzy logic control methodology within SystemBuild for simulation
and/or code generation. The Fuzzy Logic Block allows users to implement
fuzzy logic decision structures of arbitrary complexity within a standardized
block-diagram control-logic structure.

HyperBuild User’s Guide — Describes how to decrease the computer simulation
time of medium and large SystemBuild models. The bigger and more
complex the SystemBuild model, the more significant the increase in
simulation speed. HyperBuild achieves this improvement by converting a
SystemBuild block diagram into highly optimized C code (called HyperCode)
that executes much faster in the simulation engine, which normally interprets
the model data. HyperBuild can be used to generate code for continuous
SuperBlocks only.

Interactive Animation User’s Guide — Describes how to create and link
Interactive Animation pictures to your model and how to use these pictures
for model control and results display at run time. This module is usually
considered part of SystemBuild and is now supplied with the standard
RealSim package.

Neural Network Module — Describes how the Neural Network Module (NNM)
provides users the capability to define, parameterize, and include neural
networks as SuperBlocks in a SystemBuild block diagram. Adding neural
network technology to the fully integrated block diagram language of
SystemBuild includes the capability to simulate your neural network models
and to generate embedded code for them via AutoCode.

State Transition Diagram Block — Describes the State Transition Diagram (STD)
block. This separately licensed block can be obtained from the SystemBuild
Palette Browser SuperBlocks menu. The STD block is an interface between a
finite state machine and a SuperBlock diagram. In SystemBuild, each state in
a finite state machine is graphically rendered as a bubble rather than a block;
the STD editor is used to create bubble diagrams.

19

MATRIXy 7.0
Getting Started Guide

2.7 AutoCode and Documentit Books

AutoCode User’s Guide — Describes how to use AutoCode to generate code from
a SystemBuild block diagram.

AutoCode Reference — Supplements the AutoCode User’s Guide and provides
additional reference information.

DocumentIt User’s Guide — Describes how to use Documentlt to generate design
documentation from a SystemBuild block diagram.

pCODE Template — Describes the template that is used with AutoCode to generate
code for the pSOSystem real-time operating system.

Template Programming Language — Describes how to write templates using the
Template Programming Language (TPL) for AutoCode and Documentlt.

2.8 RealSim Books

RealSim User’s Guide — Details the building of a model and its execution on a
RealSim controller.

RealSim Command Reference — Provides command descriptions for using
RealSim hardware and software. This includes commands entered from the
host, from the controller console, and from Xmath.

RealSim AC-1000 Controller System Reference — Describes the RealSim PC-
based architecture for an AC-1000 controller.

RealSim PC Controller System Reference — Describes the RealSim PC-based
architecture for an AC-104 or a PCI Pro controller.

RealSim PC Controller Device Driver Kit Reference — Describes how to write a
device driver for the RealSim PC model AC-104 controller.

20

2
MATRIX Publications, Online Help, and Customer Support

2.9 Using Online Help

MATRIXy online Help is implemented as an HTML fileset linked to MATRIXy
using the Netscape NetHelp Help engine. For fully functional MATRIXy online
Help, you must use Netscape Navigator (HTML browser). Other browsers can be
used to view the online Help fileset, but they do not interface with MATRIXy to
provide context-sensitive Help.

MATRIXy online Help is compatible with Netscape Navigator Versions 3.01
through the version shipped with your MATRIXy distribution. The version we
ship is the most recent English International version available across all MATRIXy
platforms at the time of an initial MATRIX release.

The following topics are covered here:

« Starting the Online Help

« Using the MATRIXx Help Window

= Navigating Between Topics

= Finding Specific Help Topics

« Using Help Examples

« Using Context-Sensitive Help

« Using MATRIXx Help with Different Versions of Navigator

2.9.1 Starting the Online Help

You can raise the general MATRIXy Help window in these ways:

= From the command area of the Xmath Commands window, type help. If you
know the name of the command, function, or topic, specify it after the Help
command; for example, help sba.

« From the Xmath Commands window, select Help - Topics.

= If Netscape is not running, Xmath launches Netscape and opens the MATRIXy
Help window. On Windows platforms the window is launched directly. On
UNIX platforms, Netscape is launched, and then the Help window is spawned
from the Netscape session.

= You can also launch the MATRIXy online Help window independent of
Xmath, assuming the MATRIXy environment variables are properly set and
Netscape is on your path. From the operating system command line, type:

21

MATRIXy 7.0
Getting Started Guide

mtxhelp

Note, on Windows platforms, the online Help has its own shortcut on the
Start menu.

Multiple Navigators

If you have a Netscape Navigator already running, Xmath attempts to launch the
Help window in that version; if the version is not 3.01 or greater, you receive an
error message.

=« On UNIX platforms it is wise to close Netscape and/or any other color
intensive X resources before starting MATRIXy. MATRIXy applications
open successfully, but if necessary colors are allocated by other applications,
the color mapping your system attempts can result in a poor working
environment. The same is true on Windows platforms, but to a lesser extent.

= On Windows platforms Nethelp opens the MATRIXy Help using the last
version of Navigator called, not necessarily the Navigator shipped with
MATRIXy. You get an error message if the version is not 3.01 or higher.

The MATRIXy Help consists of simple HTML files with hypertext links so that
behavior is consistent among platforms and Navigator versions. Netscape
functionality has changed from version to version, however. See Using MATRIXx
Help with Different Versions of the Navigator for hints on using different versions
with MATRIXy Help.

Common Startup Questions

Why Does this Help Topic Look Funny?

In MATRIXy Help, only text for examples and syntax (where returns must be
preserved) have a predetermined font (Courier). For body text Netscape uses
default fonts, or whatever you have selected in the Netscape File menu Preferences
dialog. The Netscape default font is Times. In rare cases, your machine may not
have this font loaded, or it may not have the font in the size you have selected,
resulting in pages with letters mysteriously missing. Try choosing another font
size, or another font.

« Itis best if you have Netscape and other color-intensive applications closed
before you start MATRIXy. This allows your application to get the colors it

22

2
MATRIX Publications, Online Help, and Customer Support

needs. It also means that Netscape may not be able to grab the standard colors

the online Help uses. This means hypertext links may not be blue, and so

forth. In general, the bad colors do not impair the functionality. For the best
results:

Close all applications.
b. Start MATRIXy (but do not launch the Help yet).

c. Start Netscape, and then start online Help from the Xmath Commands
window.

Why Can’t | Use Explorer?

Our files are generic HTML 3.2, so you can use Explorer to view them; however,
you must install Netscape if you want Context-Sensitive Help to work. If you use
Explorer, some graphical problems may occur, as we only test the Navigator, and
the level of HTML support does vary among browsers.

Where Is this File?

The topic’s filename and relative location are shown at the bottom of every file,
just above the copyright, e.g., $XMATH/help/masterIX.doc.html. You can find the
value of the environment variable $XMATH from the command area of the Xmath
Commands window. For UNIX systems, type oscmd("env"); for Windows systems,
type osemd("set"). Locate XMATH among the environment variables displayed.

2.9.2 Using the MATRIXx Help Window

Help Window Layout

The MATRIXy Help window includes elements common to many browsers:
= Frames

« Buttons

23

MATRIXy 7.0
Getting Started Guide

Frames
The MATRIXy Help window uses three frames:
« The left frame contains the topics hierarchy. All blue text entries are links to
MATRIXx Help topics. Topics usually contain lists of pertinent functions and
commands.
« The lower right frame displays the current topic. For example, click a subject
in the topics hierarchy, and it is displayed in the topic frame.
= The upper right frame displays the letters of the alphabet, and the Symbols
topic. These are entry points into the online Help index. For example, click D
to display an alphabetized list of topics that start with D.
You can use scrollbars or the Bottom and Top buttons to navigate within frames. To
change the width or height of a frame, click the dividing line between two frames
and drag in the direction you want the frame to enlarge/decrease. Alternatively,
change the size of the entire window using a method appropriate to your window
manager.
Buttons

The Help window frame has Backwards, Forward, and Exit buttons. The backwards
and forwards arrows move you to the last link visited, or forward in the viewing
history to a link you’ve previously visited. You can also go forward and back from
the Netscape Quick Access menu. Hold the right mouse button down (anywhere
within the Help window) to raise this menu.

2.9.3 Navigating Between Topics
By default, blue text in MATRIXy Help can be used to jump to a related topic. To
jump, click the text.

The Prev and Next buttons, when shown, take you to the previous/next file in the
fileset. Because topics are cross-linked, this is not necessarily the next file in the
listing that the topic hierarchy shows, because topics are cross-linked.

24

Topic Groupings

2
MATRIX Publications, Online Help, and Customer Support

Some topic categories have been grouped into single large topics:

AutoCode

Model Reduction Module
Optimization Module
Programmable GUI
Robust Control Module
RealSim

RVE

Simulation

SystemBuild Utilities

You can access these topics using index and cross reference jumps in the normal
way, however:

Top and Bottom links lead to the first and last files in the category, not the top
or bottom of the individual Help.

Scroll up or down to navigate through the fileset topics; Prev and Next are not
available.

When you print a combined fileset, the entire topic category is printed.

2.9.4 Finding Specific Help Topics

If you know the name of the topic you want to view, go to the command area
of the Xmath Commands window and type help, followed by the name of a
command, function, or block. Abbreviation is supported as long as enough
characters are supplied to guarantee a unique response. For example,

help plot # raise the help on plot
help algeb # raise the help on the AlgebraicExpression block

Go to the topics hierarchy and select a general topic; follow links through the
topic hierarchy listings until you find a topic of interest.

Use the online Help Index. Click a letter of the alphabet in the upper right
Frame to display all entries that start with that letter. The Prev and Next
buttons to jump to the next alphabetized category.

25

MATRIXy 7.0
Getting Started Guide

2.9.5 Using Help Examples

There is a special convention for MATRIXy commands and functions. If a
command or function name at the top of the Help category is blue, there is a link
from the topic name directly to the Examples portion of the Help. In some cases,
examples are distributed through the topic. This is usually done to provide
related discussion, or keyword category grouping.

Command or function Help usually include Help examples in the form of Xmath
or SBA commands and functions. To test the Help examples, use your window
manager’s copy and paste conventions to copy the example text into the
command area of the Xmath Commands window, and then press Return. Usually
this involves highlighting some text, using mouse-clicks or menu options to copy
the text, and then pasting the text to the command area of the Xmath Commands
window.

NOTE: Loss of highlighting is a frequent side-effect of color map conflicts.
Netscape’s default highlight color in most environments is a pale yellow. If this
color is not available it may seem that highlighting is “broken” when you attempt
to highlight text on a white page. In most cases you can assume the highlighting is
taking place and carry out your copy and paste operation successfully.

Some Help examples consist of Xmath command and function definitions used in
conjunction with calls issued from the command area. To test examples where
Xmath commands and functions are defined:

= Use a text editor to create a new Xmath command or function file.
=« Copy and save the example command or function definition script to the file.

« Name the file commandName.msc or functionName.msf and save it to a folder
included in the lookup path.

= Execute the commands that call the newly defined command or function, by
copying them into the Xmath command area.

2.9.6 Using Context-Sensitive Help
The MATRIXy online Help facility is context sensitive. Clicking the Help button or

the ? toolbar button from a specific window or dialog launches Netscape
Navigator to provide you with information specific to that topic.

26

2
MATRIX Publications, Online Help, and Customer Support

For example, to get Help on the SuperBlock Editor, go to the Editor and select
Help - Topics, or click the ? toolbar button. The Help for the SuperBlock Editor
appears. To get Help on a given block, open its block dialog (select the block, and
then press Return), and click the Help button. The Help for the active block is
displayed.

2.9.7 Using MATRIX yx Help with Different Versions of Navigator

If you are not familiar with HTML browsers you should read the Netscape
Navigator online documentation. The MATRIXy online Help deals exclusively
with the Navigator. If you have Communicator, which includes the Navigator as
part of a tool suite, only the Navigator is relevant to MATRIXy.

For more information on Netscape products, see Netscape’s home page at http://
home.netscape.com.

4.X Navigator Commands

A standalone Navigator (sans Communicator) is shipped with MATRIXx 6.1 or
higher.

= In Navigator 4.X, the NetHelp application disables all normal browser menus
and toolbar buttons in a Netscape window. If you want to print or manipulate
a MATRIXy Help topic, you must first send the file to a new window. To do
this, place your cursor in the frame containing the desired text, and then use
the right mouse button to raise the Navigator Shortcut menu; select Open Frame
in New Window. The new window has all the standard Navigator options
enabled. You can now print the Help file, or even save the HTML source and
edit it locally (this is useful when you are writing online Help for a
MathScript program and you’d like it to look the same as MATRIXy Help).

= To alter the appearance of a Netscape window (for example the font sizes or
styles), use Edit - Preferences. Note that changes you make in one window
affect all others.

= For more information on Netscape products open a new window and select
Help - Contents. The Netscape NetHelp window appears.

27

MATRIXy 7.0
Getting Started Guide

Navigator 3.X Commands

Although Wind River does not ship Navigator 3.X, the MATRIXy Help interface
supports it. To get more information on using Netscape 3.X, read the Netscape
Navigator HandBook. This document is available from the Help menu on the
Netscape window frame. By default, you can’t see this menu from the MATRIXy
Help window because NetHelp turns off the toolbars for the standard browser.

= On Windows platforms, the menu bar cannot be raised. However, the most
useful commands can be triggered with the Ctrl key:

Keystrokes Action

Ctrl+f Open the Find dialog.
Ctrl+p Open the Print dialog.
Ctrl+n Open a New browser. By default nothing is displayed in the new window.

To view a specific Help file, find its location at the bottom of MATRIXy
Help topic file (just above the copyright). In the new browser, select

File -~ Open and supply the Help topic path, where $XMATH is expanded
to the location of your Xmath installation.

You can now print the Help file, or even save the HTML source and edit it
locally (this is useful when you are writing online Help for a MathScript
program and you’d like it to look the same as MATRIXy Help).

28

2
MATRIX Publications, Online Help, and Customer Support

2.10 MATRIXx Release Information

For current MATRIXy release information, see the MATRIXy 7.0 Release Notes:
= online books: click Release Notes on the document CD Welcome page.

= online Help: select the topic Release Info - Release Notes

2.11 MATRIXy Customer Support

For up-to-date information on how to obtain customer support for MATRIXy,
visit the Wind River web site at the following URL:

http://www.windriver.com/support
To contact customer support for MATRIXy:
= Send E-mail to support@windriver.com.

« Phone 1-800-USA-4WRS (800-872-4977).

29

MATRIXy 7.0
Getting Started Guide

30

Xmath

Xmath provides tools for mathematical analysis. You can create, store, plot, and
explore data in Xmath. You can define your own functions, commands, and
objects, and also link in externally compiled C or Fortran code. Xmath is the
controlling environment for SystemBuild and related products. This chapter gives
an overview of Xmath functionality.

3.1 Introduction to Xmath

The following sections introduce the Xmath tools and capabilities:
« Data Handling
= Numerical Analysis

= MathScript

3.1.1 Data Handling

MathScript, the language of Xmath, allows you to define and manipulate data in
the form of numbers, objects, graphs, and text. Xmath provides a graphical user
interface to facilitate data management. You can save, load, import, and export
data.

31

MATRIXy 7.0
Getting Started Guide

3.1.2 Numerical Analysis

Xmath provides an extensive library of commands and functions, including
mathematical functions and filter design functions. Xmath also provides two
plotting facilities, one with an interactive graphics display, and the other
integrated with a programmable GUI facility.

Optional Xmath modules contain commands and functions to address special
uses. The modules are documented in online Help and each has an online
manual. Discussions of theory and examples are provided in the manuals. See
2. MATRIX Publications, Online Help, and Customer Support for a summary of
available documentation.

3.1.3 MathScript

Xmath’s programming language, MathScript, allows users to alter or extend
Xmath’s functionality. An interactive debugger and a full complement of
checking utilities simplify developing scripts to define functions, commands, and
objects.

Xmath has an object-oriented structure that makes it unique among numerical
analysis tools. This enables efficient numerical handling, including the
overloading of operators, and more. Xmath’s hierarchical objects greatly reduce
the amount of user programming devoted to checking data characteristics.

Xmath includes a fully programmable graphical user interface (PGUI or GUI).
This programmable GUI allows you to create and manipulate windows, dialogs,
and other user interface tools. Any user can develop convenient user interfaces.
You can find instructions for using and building GUI applications in the Xmath
online Help topic: MathScript Programming, Programmable GUI.

MathScript supports calling external routines from within Xmath, or you can call
Xmath from your own C programs. The Linked External (LNX) facility uses an
interprocess communication (IPC) mechanism for communication between your
external routine, which runs as a separate process, and Xmath. You can modify
and recompile your routine without exiting Xmath, so that you can use and
debug external programs in the same session. The User-Callable Interface (UCI)
allows a C program to invoke Xmath as a computational engine. You can invoke
Xmath from your C program and pass it values or expressions to evaluate and
retrieve results, perform calculations, or plot values. For information on how to
create LNXs and UCls, see the Xmath User’s Guide.

32

Xmath

3.2 Getting Started in Xmath

This section assumes that Xmath has been properly installed and configured. See
the MATRIXy System Administrator’s Guide, Windows Version for installation
details.

NOTE: Many of the operations described in this guide can be accomplished by
alternative methods and shortcuts. To simplify the presentation, only one method
is specified in most cases.

3.2.1 Directories Defined by Environment Variables

The MATRIXy product line is installed in a directory known as ISSHOME. The
installation process modifies Xmath startup scripts and provides the location of
ISIHOME as an environment variable (%ISIHOME%) that is known only within
the MATRIXy environment. Three additional environment variables, also known
only within the MATRIXy environment, define three subdirectories of ISSHOME:
O/OXMATHO/O, O/OCASE%, and %SYSBLD%.

The MATRIXy environment variables are recognized only in the Xmath command
area. If you need to use them elsewhere (for example, in the operating system),
you must specify the full pathname. In such cases, we indicate the file location
with italics: ISHOME, XMATH, SYSBLD, and CASE. If you do not know this
pathname, you can determine it by typing the following command within the
Xmath command area:

oscmd(“echo % wvariable%");

where %variable% is %ISTHOME%, %XMATH%, %CASE%, or %SYSBLD%.

NOTE: The environment variables discussed within this section are subject to
change, and therefore, should not be used in scripts.

33

MATRIXy 7.0
Getting Started Guide

3.2.2 Setting Your Display Colors

Xmath plots require that the Windows display driver be set to display a minimum
of 256 colors.

Default colors for your display windows, borders, and other screen components
are established through the Appearance tab in the Settings - Control Panel - Display
selection, just as in other Windows applications.

3.2.3 Starting Xmath

To start and run Xmath, select Start - Programs - MATRIXy — Xmath.

Xmath starts and the Xmath Commands window is displayed as shown in
Figure 3-1.

3.2.4 The Xmath Commands Window

When you invoke Xmath, the Xmath Commands window is displayed (see
Figure 3-1).

You type input in the command area. Output, environment status, and error
messages are displayed in the log area above.

34

Xmath

Figure 3-1 Xmath Commands Window

< ¥math Commands
File Edit “iew Options: Window Help

Command and function output appears here.
Log Area

Messages and warnings appear here.

I [=] E3

Command Area Enter commands here (for example, build).

Feady

rmain

;ml_u

35

MATRIXy 7.0
Getting Started Guide

Menu Choices

Menu choices available in the Xmath Commands window are:

» The Edit menu displays commands for editing the Xmath command area.
Conventional windows selections are Undo, Cut, Copy, and Paste. Xmath adds
Clear Log, Clear Command, and Send Command.

« The View menu is reserved for expansion.

= The Options menu includes a Font menu item that allows you to set any
TrueType font installed on your Windows system to be used in your Xmath
displays. It also has a Format menu item for selecting the format of numeric
values displayed in the Xmath log window.

NOTE: Xmath provides no capability for saving a font selection between sessions.

= The Window menu lets you bring up the Graphics or Palette window or invoke
SystemBuild.

Command Window Execution

The Commands window has two command modes: single-line and multiline.

The default mode is single-line. After typing a MathScript instruction, you press
the Return key, and the instruction is executed by Xmath.

The key sequence Shift-Return toggles the command mode. In multiline mode, the
Return key adds a new line rather than sending the instruction to Xmath.

For example:

for i=1:10 Press Shift-Return at the end of the first line to switch to
multiline command mode. Press Return to add a new line.

i? PressReturn at the end of the second line to add a new line.

endfor Press Shift-Return at the end of the last line to switch to

single-line command mode. Press Return to send the
multiline for loop to Xmath.

NOTE: The above text is not valid for cutting and pasting from online format into
Xmath.

36

Xmath

3.2.5 Running Demos

For a tutorial of Xmath'’s basic features, see “Xmath Jumpstart” in Xmath User’s
Guide. For an online demo, click in the command area, and then type:

demo

You can choose from several example scripts. As a script executes, explanatory
text is displayed in the logarea; a Pause dialog pauses the script to give you time
to read the text or view a plot. Move the Xmath Pause dialog so that it does not
obscure the Commands window.

3.2.6 Accessing Online Help

To access online Help from Xmath, select Help - Topic from the Xmath Commands
window. See 2.9 Using Online Help, p.21, for detailed instructions on using the
online Help feature.

3.2.7 Stopping Xmath

« To exit from Xmath, select File - Exit from the Commands window menu bar.
Xmath prompts you to save the workspace.

= To stop an Xmath operation, type Ctrl-Break. Note that Ctrl-Break cannot
interrupt a process in communication with the operating system (load, save);
this includes creating and displaying windows.

= To abort Xmath if the program stops responding (for example, after a system
error), enter Ctrl-Alt-Delete to display the Task Manager; then select Xmath
Commands and click the End Task button.

37

MATRIXy 7.0
Getting Started Guide

3.3 Performing Sample Xmath Tasks

This section introduces some basic and advanced Xmath features, including
MathScript. If you have never used a mathematical analysis package, become
familiar with the demos described in 3.2.5 Running Demos, p.37, before
continuing.

In the sections below, instructions that you enter in the commands area are shown
in bold Courier. A description of the instruction, if applicable, and related Help
topics are found following the Xmath comment symbol (#), to the right of each
input.

Try some of the examples below. You do not need to type comments. If you are
accessing this document online, the instructions can be copied and pasted to the
command area for execution.

NOTE: Command and function names can be shortened to a unique opening
substring (as few as four characters).

If Xmath is not running, see 3.2.3 Starting Xmath, p.34.

3.3.1 Creating Data

The first step in mathematical analysis is usually creating some data. Enter the
following MathScript statements to create and save the variables (comments are
for your information):

See punctuation.
a=[1,2,272,3"3] # Define a variable. See vector and operators.
b=1:1:5 # See regular vector.
c=sin(b) # Call a function. See functions.
Xmath provides the ability to save a graph as data (to a variable):
graphl=plot(c,{titte="Creating the Graph Object graph1."})

For more information on graph objects see the online Help topic “Graph Object”
under Xmath - Plotting.

38

Xmath

3.3.2 Getting to Know Objects

You have just created two types of numeric objects. Let’s identify each object.

whatis b # See commands for command calling syntax.
whatis ¢ # See objects.

Look at the vector topic in the online Help. vector is a numeric class. Nonnumeric,
or complex, objects are strings or combinations of strings and numeric objects.
Polynomials fall into this category:

d=makepoly(a,"d") # See makepoly.
e=polynomial(1:3,"d") # See polynomial.

Xmath'’s object structure allows you to build mathematical constructs in a natural
way. Create a system as follows:

sys=system(d,e) # See system and transfer function.

Some functions accept only a certain type object and return another type object.
For example, char() accepts an integer and returns a string:

str=char(65)

The freq() function accepts a system and returns a parameter-dependent matrix
(PDM). A PDM is a special object that stores matrices in relation to an
independent parameter or domain. (In SystemBuild, simulation output is a
PDM.) The independent parameter is typically time or frequency.

Let’s see how PDMs look.

f=freq(sys,b)?
g=freq(sys,{fmin=1,fmax=length(f),npts=length(f)})?

To create £, we specified a vector of frequencies; this became the domain. To create
g, we let freq() calculate the frequencies for the domain. Let’s compare the two:

graphl=plot(f,{rows=2})?
graph2=plot(g,{row=2})?

For more on PDMs, see pdm and PDM object in online Help. For more on the plot()
function, see the Xmath User’s Guide and the plot topic in the MATRIXy online
Help.

39

MATRIXy 7.0
Getting Started Guide

3.3.3 Saving, Loading, and Printing Data

To list the variables you have created so far, type

who

Note the sizes (see who() in online Help for an explanation).
To save everything you have created, type

save

Xmath saves all data to a file with the default name save.xmd in the current
working directory. (You may want to specify a filename because save.xmd will be
overwritten by the next save command.) The first of the following two commands
saves your variables to a file, and the second uses a wildcard to save a subset of
variables to a different file.

save "try.xmd"
save "try_2.xmd" g* sys

See “save” and “wildcards” in the Xmath online Help.
Type the following command to display your working directory:
show directory

You can use the Xmath operating system command oscmd to list the files you
saved:

oscmd("dir try*.*")

The operating system should find both try.xmd and try_2.xmd. If it does, you can
delete what you have created in Xmath:

delete *

Retrieve the second file you saved and use the function who() to list the variables
that you have:

load "try_2"
who

40

Graphics

Printing Graphs

Xmath

Let’s use the variable sys again:
nyquist(sys)?

The function nyquist() creates a plot; however, the output of nyquist() is not the
graphics object. To save the contents of the Graphics window, use one of the
following methods:

= In the Xmath Graphics window, select File - Bind to Variable, and then specify the
variable name graph3

= From the Xmath Commands window command line, type:
graph3=plot()

You now have three graph objects: graph1, graph2, and graph3. You can display
them in a manner analogous to other variables:

graphl
graph2
graph3

To print the graph currently displayed in the Graphics window, use one of the
following methods:

= In the Xmath Graphics window, select File - Print and fill in the resulting dialog.
« In the Xmath Commands window, enter
hardcopy {color=0}

The setting color=0 ensures that you receive a black and white rather than a
color plot, which is the default.

NOTE: To use the hardcopy command to print directly, the environment variable
%XMATH_PRINT% must be defined. Open Control Panel - System and examine the
environment variables. If you need further help, see the Xmath User’s Guide.

Use hardcopy to save your graphics to a PostScript'— (.ps) file and then submit the
file to the printer with a standard command. For example:

hardcopy graph3, file="graph3.ps", {color=0}

41

MATRIXy 7.0
Getting Started Guide

From a Command Prompt window, type:

copy file.ps path_to_printer

3.4 MathScript

Example 3-1

MathScript, the language of Xmath, defines statements, constructs, punctuation,
functions (MSFs), commands (MSCs), and objects (MSOs). You can use
MathScript to create your own functions and commands. Open a text editor, and
create a file named cdown.msf (.msf corresponds to MathScript function) with

contents as shown in Example 3-1.

cdown.msf

#

cdown counts from the integer input down to 1
and displays the square root of each count.
cdown outputs a vector of the square roots

function [out]=cdown(c)

if is(c,{integermin=1}) then
out=[J;
d|Sp|ay Whkkkkkkkkkkkk!
for i=[c:-1:1]
display "SQRT(" + string(i) + ") =" + string(sqrt(i))
out=[out,sqrt(i)];
endfor
else
error("cdown accepts positive integers only","C",c)
endif

endfunction

Save your file in the current directory for Xmath (or any directory in the lookup
path), and return to Xmath. To see your current lookup path:

show path
To add a new directory to the path:

setpath™ directory path specification”

42

Xmath

Try calling cdown() with valid and invalid inputs:

cdown(5)

cdown(-5)

cdown("what, me worry?")

3.5 The Xmath Debugger

The Xmath debugger helps you to debug MathScripts you write (MSFs, MSCs,
and MSQOs). You can control the Xmath debugger interactively from the command
area in the Commands window.

3.5.1 Starting the Debugger

Debug mode starts under three circumstances:

= A call to debug is made with a script that is set up for debugging—that is, you
execute the debug command:

debug script_name

The debugger opens automatically on the first executable line in the script.

= A script contains a syntax error (for example, an error in punctuation, such as
a missing brace: plot(a,{xlab="A missing brace").

= A script contains a run-time error. A run-time error occurs when an
instruction is impossible to process. The following statement would cause a
run-time error because the operation + does not accept an integer and a
string:

x=5 + "hello"

Normally, when an error is detected in a script, Xmath automatically displays the
error in the debugger window and sets the interpreter to debugging mode. To
prevent the interpreter from going into debugging mode, execute the command:

set debugonerror off

43

MATRIXy 7.0
Getting Started Guide

3.5.2 Using the Debugger

In the command window, let’s start the debugger by typing:
debug cdown

The debugger sets a break at the first line of executable code—in this case, line 6.
Now that a break point is set, let’s try the debugger:

cdown(2)

Look at the difference in the status bar at the bottom of the Xmath window. You
are now in debug mode, and the function that you are debugging shows on the
right side. You can step through the code and examine local or global variables.
Type next to continue until you reach the first line of the for loop. To watch the
variable i, type:

set watch i

Continue to type next. Note that you travel through the for loop two times, and
the debugger notifies you when i is incremented.

You can examine variables local to the function. In the command area, type:

who

i?

When you fall out of the loop, type next, or go to run the function through to the
end. Figure 3-2 shows a debugging session similar to what you have done.

7

For additional information, see the “MathScript Programming — MathScript Debugger”
online Help topic.

3.5.3 Exiting the Debugger
When you reach the end of the MathScript, you automatically exit debug mode.

Type abort in the Commands window to exit debug mode before completing the
script.

44

Xmath

Figure 3-2 Xmath Debugger Session

File Edit %iew Option: indow Help

Breakpoint at line & in cdowm.
"if isi(c, {integer!) then
'next

Breakpoint at line 7 in cdowm.
for i=[ec:-1:1]

'set watch 1

next

Walue of watched wariable i has been modified.
display "*%% " 4+ string(i) + " FEFET
1
Breakpoint at line 7 in cdowm.
for i=[ec:-1:1]
'next
*EE 2OEFE

Breakpoint at line § in cdowmn.
display "*%% " 4+ string(i) + T wEET

'next
TEEX l TEE

Walue of watched wariable i has been modified.
dizplay "Ignition''™
1
Breakpoint at line § in cdowm.
display "%*% " + string(i) + " FFFT
'next

Breakpoint at line 10 in cdowm.
dizplay "Ignition''™

'next

Ignition!

45

MATRIXy 7.0

Getting Started Guide

3.5.4 Correcting Errors During Debugging

When you are in the process of developing a MathScript, you can open your file in
an ASCII text editor and fix problems that the debugger locates. After you save
your file, you can restart the script, and start debugging again. The debugger
identifies the locations of errors by means of program line numbers; however, one
limitation of some editors is that they do not support line numbers. You can use
the editor’s find feature to locate the error by copying the line containing the error
from the debugger to the search field. To avoid this inconvenience, you can use an
ASCII editing program that supports line numbering.

3.6 Xmath Plotting

Xmath provides a choice of three basic plotting functions:

The plot() function provides an easy to learn syntax for 2d and 3d plotting in
an interactive graphics window. For a quick, interactive look at your data,
and for 3d plotting, the plot() function is a good choice.

The uiPlot() function provides full featured 2d plotting integrated with an
extensive programmable GUI facility. If you want more control over the
formatting of your 2d graphics, or the ability to integrate plots with your own
interactive Xmath PGUI tools, then uiPlot() has the power you need.

The plot2d() function provides quick access to advanced formatting features
of the uiPlot function, while avoiding the cost of constructing a
programmable GUI tool. Use plot2d() to obtain highly-customized 2d
graphics without writing a PGUI tool.

3.7 Exploring Additional Topics

There are many more topics to explore in Xmath. For additional information, see
the MATRIXy online Help and the Xmath User’s Guide.

46

SystemBuild

SystemBuild is a graphical programming environment that uses a block diagram
paradigm with hierarchical structuring for modeling and simulation of linear and
nonlinear dynamic systems. You can use the SuperBlock editor to build block
diagram models, and then test them with SystemBuild Simulator and additional
analysis tools. This chapter presents an overview of SystemBuild, as well as a
tutorial to guide you through some of the most common SystemBuild tasks. The
tutorial includes the use of BetterState with SystemBuild.

Additional information about SystemBuild is available:

« The SystemBuild User’s Guide details use of the SystemBuild SuperBlock
Editor and the SystemBuild Simulator. It also contains a comprehensive guide
to terms, concepts, and keyboard and mouse actions, as well as several
chapters on special topics.

= The extensive SystemBuild block library and other technical reference topics
are documented in the MATRIXy online Help.

= 2.6 SystemBuild Books, p.18 lists additional SystemBuild publications.

47

MATRIXy 7.0

Getting Started Guide

4.1 Introduction to SystemBuild

Table 4-1

This section introduces fundamental SystemBuild concepts, tools and functions.

Table 4-1 provides definitions for key terms used throughout this guide and in
other SystemBuild documentation.

Definition of Key SystemBuild Terms

Term Definition

SuperBlock A basic hierarchical object in SystemBuild, which serves as
a container for blocks and defines the environment in
which they operate.

Block A basic functional element of SystemBuild. A set of blocks

Internal Connection

External Connection

BetterState Chart

are used to make a block diagram model of a controller or a
real-time system.

Signals and data are passed between blocks using
connections that appear as lines in the diagram within the
Editor window. Internal connections pass data between
blocks within the same SuperBlock.

Connections between the SuperBlocks of a model and
between the SuperBlocks and the outside world.

A construct that maintains state information, controls state
transitions based on events and conditions, and produces
actions associated with states and transitions.

48

4
SystemBuild

4.1.1 Catalog Browser

The Catalog Browser is used to manage your SystemBuild models. You use the
Catalog Browser to save and load model catalogs composed of SuperBlocks and
BetterState Charts. It can also be used to view currently loaded SuperBlocks and
BetterState Charts, create new SuperBlocks and BetterState Charts, and to select
SuperBlocks and BetterState Charts for editing, as well as other functions.

The Catalog Browser, shown in Figure 4-1, contains a menu bar and a tool bar
with buttons that are shortcuts to menu operations. The main portion of the
Catalog Browser is divided into two panes. The left pane displays a hierarchical
catalog tree of different types of objects (for example, SuperBlocks). The hierarchy
provides compartmentalization of models and allows you to build and visualize
extremely large models; it also provides for reuse of elements of a diagram. The
right pane contains the contents of the catalog object selected in the left pane.

Figure 4-1 Catalog Browser

ESyslemBuild - Catalog Browser

Menu Bar 4}Eile Edit Wiew Toole Option: ‘“erzioning ‘Window Help

Toobar ——» (3| D[3| S[e[G@la] =] (x| 2= 2]

[Catalog: Main [Cantents of MainMade]
Elﬁ I ain Mame [CatTupe | Inputs [Outputs |
E‘ﬁ Model 1+ eventual 5B [Continuous) 4 3
- vibe 1 Newtan SB [Continuous) 5 3
-0 Supeilacks T vibe 5B (Continuous] 1 3
A evertual 2 vibeChart BetterState Chart [3
Catalog Tree =88 Betteritate Charts
(Left Pane) B8 yibeChart
----- £7 State Diagrams
----- &3 DataStores
I {3 Components
Contents List [{ . £3 Variables R
(Right Pane) | = &9 UserTypes i
“ Libraries

-3 ¥math Partitions

T8 Cataloghiew |] Fi|BViEW| 4 | I

Ready

a2

49

MATRIXy 7.0
Getting Started Guide

4.1.2 SuperBlock Editor

Figure 4-2

The SuperBlock Editor (also known as the Editor window or Editor) offers a user-
friendly graphical modeling environment, which allows you to construct
continuous-time, discrete-time, and hybrid systems of arbitrary complexity. You
use the Editor window (see Figure 4-2) to edit the contents of your model.

SystemBuild supports the use of up to 20 Editor windows at once. Each Editor
window can display the contents of one SuperBlock. The Window menu available
on both the Catalog Browser and the SuperBlock Editor facilitates switching
between the Catalog Browser to select a SuperBlock for editing, and an Editor
window to do the editing.

SystemBuild Editor

5 eventual Scope: Main M=l E3
File Edt Yew Connect Toolz Options “Window Help

5 = =Y = S I 15121 A [P

zlirl'a—'l-l [Scalar ~[[Scalar ~|| - ~|lsolid__ ~|INorm

Continuous JuperBlock Inputs Outputs =
eventual 4 3
dampTest danplCross
12 [13]
a Zero
Crossing
vibheChart
feu{=1 |i
s
wallTest wallCross -
1
=] 1o
Zerno Betteritate
Crossing a— Chart

Ready o

50

4
SystemBuild

4.1.3 SystemBuild Palette Browser

The SystemBuild Palette Browser (see Figure 4-3) provides a choice of over 80

block types, including dynamic systems, algebraic and logical functions, signal

generators, piecewise linear functions, trigonometric and exponential functions,

and user-programmable blocks. The palette feature is customizable. The
SystemBuild User’s Guide describes several methods for adding custom blocks and

custom palettes.

Figure 4-3 Palette Browser

E Palette Browser =] E3

File Optionz Help

-9 Main =
%81 SuperBlocks
%51 Algebraic s
-G8 Adificial Inteligence
S8 BetterState —=ouarefinol
-85 Coordinate Transformation
@ Dynamic LOG{a)
-G8 Implicit
% :_nte.rpu:ullatll:ln Logarithm
ogica
-G8 Matrix Equations
-G8 Piece-wize Linear e
B ¥ Povwer Exponential Logarithmic
S8 Signal Generator _ Exporential
-G8 Software Constructs
-G8 Trigonometric & o
%% User Programmed b

IPowerCongtant

=
Feady l—l— ’—J

4.1.4 SystemBuild Simulator

The SystemBuild Simulator facilitates simulating your block diagram model
under user-defined conditions. The Simulator provides flexibility in algorithms

51

MATRIXy 7.0
Getting Started Guide

for integration, data input methods, model timing, and other areas. Both
interactive and command based simulation interfaces are provided.

Simulation in an interactive mode lets you interact with the model, and monitor
outputs of your blocks during simulation. You can debug your models with
interactive capabilities such as block stepping or time stepping.

You can change the values of some block parameters during simulation by using
the Run-Time Variable Editor (RVE).

4.1.5 Two- and Three-Button Pointing Devices

Workstation users of SystemBuild, accustomed to the three-button pointing
device, or mouse, may find themselves on a Windows NT /95 machine with only
a two-button mouse. The Microsoft Windows convention for the two-button
mouse is that any operation that you perform using the middle mouse button on
the workstation can be performed on a PC by using the right mouse button and
the Ctrl key. To connect blocks, one of the most common functions of SystemBuild,
for example, click the right mouse button in each block with the Ctrl key pressed.

4.1.6 Specifying an ASCII Text Editor

You may need a text editor for entering text in some block properties dialogs.
Each tab that requires text has a drop-down combo box that allows you to select a
text editor.

To customize the editor selections available:
Edit the SYSBLD\etc\user.ini file.
See the SystemBuild User’s Guide for details.

To change the default editor in Windows operating systems, from Windows
Explorer, select Control Panel - System. In the System dialog, select the Environment
tab. At the bottom, type EDIT_COMMENT in the Variable text field; type the path
and filename of your editor in the Value text field. Alternatively, you can type the
following command in a DOS Command window:

set EDIT_COMMAND-=Editor_name

You must restart Xmath before the new editor becomes available.

52

4
SystemBuild

If no text editor is specified by the %EDIT_COMMENT% environment variable,
the default is Notepad, which is a simple, menu-driven ASCII text editor
available on every Microsoft Windows system.

4.1.7 SystemBuild Optional Modules

This section describes optional modules available for SystemBuild.

Fuzzy Logic Block

The Fuzzy Logic Block module lets you design and implement fuzzy logic real-
time applications that are fully supported by SystemBuild, AutoCode, RealSim,
and Documentlt.

Neural Network Module

The Neural Network Module lets you define, parameterize, and include neural
networks as SuperBlocks in a SystemBuild block diagram. Adding neural
network technology to the fully integrated block diagram language of
SystemBuild includes the capability to simulate your neural network models and
to generate embedded code for them via AutoCode. The module supports both
training (offline) and learning (real-time) modes of operation.

State Transition Diagram Block

State transition diagrams (STD) offer the capability to design and implement
finite state machines. A mathematically rigorous implementation of finite state
machines is supported by simulation, AutoCode code generation, and
Documentlt. RealSim also supports STDs.

4.2 Starting and Exiting SystemBuild

In this section you learn how to start and exit SystemBuild.

53

MATRIXy 7.0
Getting Started Guide

NOTE: Many of the operations described in this guide can be accomplished by
alternative methods and shortcuts. To simplify the presentation, only one method
is specified in most cases.

Starting SystemBuild

To start SystemBuild:

1. If Xmath is not currently running, start Xmath as described in 3.2.3 Starting
Xmath, p.34.

2. Type the following in the command area of the Xmath Commands window:
build

After a short time, SystemBuild is loaded and the Catalog Browser window is
displayed.
Exiting SystemBuild

To exit SystemBuild:
Select File - Exit from the Catalog Browser.

SystemBuild asks if you want to save your work before exiting; if you answer
yes, the Save As dialog appears.

4.3 Basic SystemBuild Tasks

This section describes tasks performed in basic SystemBuild use.

NOTE: Many of the operations described in this guide can be accomplished by
alternative methods and shortcuts. To simplify the presentation, only one method
is specified in most cases.

54

4
SystemBuild

4.3.1 Creating a New SuperBlock

The Catalog Browser can be used to create a new top-level SuperBlock. If this
window is not activated, click on the Catalog Browser’s window frame to raise it
to the top, or select Window - Catalog Browser from the Editor.

To create a new top-level SuperBlock and define its properties:
1. Select File -~ New - SuperBlock.

The SuperBlock Properties dialog appears. Use this dialog to define properties
of the SuperBlock, such as its name, type (continuous or discrete), and
number of inputs and outputs.

Figure 4-4 SuperBlock Properties Dialog for Creating a New SuperBlock
SuperBlock Properties E |

I ame [nputs Cutputs
||:| = =
ISampIe SuperBlock = f =i

Attributes |Ecu:|e | inputs | Qutputs | Document | Comment |
— Trigger Ophions

Type IEDntinuous j

Timing Feguirement IEI

InpLt M arning I Inhert Higher-Lewvel Namesj

[utput Bastmg I.-’-‘«fter Timing Req. j
(57t | ID :|I Trigger Siarnal IF'EIanl ¥
— Dizcrete Options — Procedure

Sample Feriod IU s IStandard j
Sample Shkew IEI Intermpt I

Etiatile Signal IF'arent j SDE [rterface =

ok Cancel | Help |

55

MATRIXy 7.0

Getting Started Guide

2.

With the SuperBlock Properties dialog (see Figure 4-4), perform the following
steps:

a. Click in the Name edit field, and type:

Sample SuperBlock
b. In the Outputs field, set the number of outputs to 1.
c. Click OK to verify creation of the SuperBlock.

The SystemBuild Editor (or Editor window) now appears; it contains an
Info Bar, which displays the SuperBlock name (Sample SuperBlock), type
(Continuous), and other relevant information (0 inputs and 1 output)
about the current SuperBlock.

4.3.2 Creating a New Block in a SuperBlock

You create a new block in a SuperBlock by dragging it from the Palette Browser
into the Editor window (see Figure 4-5).

To create a new block in a SuperBlock:

1.

56

With your SuperBlock displayed in the Editor window, select Window - Palette
Browser to open the Palette Browser.

Reposition your windows so that both the Palette Browser and the Editor are
visible.

Click the Algebraic palette in the Palette Browser.

Move the mouse cursor over the Gain block icon. Press and hold down MB1.
(©)
While holding down MB1, drag the mouse cursor into the Editor window. (O)

With the mouse cursor within the Editor window, release MB1 to complete the
drag-drop operation. (0)

4

SystemBuild
Figure 4-5 Creating a New Block Using the Palette Browser
G Palette Browser M= E3ll O 5ample SuperBlock Scope: .Main | _ (O]]
File VWiew Help File Edit “iew Connect Tool: Options Window Help
sla | | S (5s] W] 2] %] Bl alw]] »|E]A] 2z s 5

|»

=g ENEA ISt:aIar lenalal jINn Color lepecial jISnIid j

E-9B Main
G2 SuperBlocks CAIN
B Algebraic 4 J\Cnninunus SuperBlock Inputs Outputs ;I
0 1

-G8 Pisce-wiss Lineat arrple SuperBlock

X Gain

S5 Dynamic
S8 Implicit ALGEE
@ Trigonometric EXPL

-G8 Power Exponential Logarithmic

S5 Coordinate Transfamation AlgebraicE xpression
S5 Signal Generator D
58 Logical @
-G8 User Programmed
G2 Atificial Inteligence S et
B Interpolation
-G8 Software Constructs 1 WAR

i " POLY
S5 Matis Equations

Polynomial

|

ElementProduct

= .
|l |»|‘I

DrotProduct
1 Feady i

4.3.3 Loading a Model File
Loading a model file opens a previously saved SystemBuild diagram. Once
loaded, you can then edit or simulate that model.

To load the pred_prey catalog file from the Xmath command area:
load "$SYSBLD\demo\predprey_demo\pred_prey.cat";

$SYSBLD is an environment variable that specifies your SystemBuild
directory, defined automatically when you start Xmath. Environment
variables are recognized only on the Xmath command line. SystemBuild
catalogs can also be loaded from the Catalog Browser, but there you must
specify the full pathname of the catalog directory.

After the load completes, the Catalog Browser lists the contents of the model
(see Figure 4-6).

57

MATRIXy 7.0
Getting Started Guide

Figure 4-6 Predator-Prey Model Loaded into Catalog Browser

Eﬁystemﬂuild - Catalog Browser

File Edit “iew Toolz Option: “erzioning Window Help

B 0| g|=|E|olals) = ls|ex] 2l=e] 2

|Eatalug: kdain |D3ntents aof all files:
=T Main Hame I CatTvpe I Inputsl Dutputsl Peri
B3 Model ¥ Predator_Prey SB [Continuous) 1 2

H'"ﬁ SupeBlocks | e
4§83 BetterState Charts
-8 State Diagrams
-3 DataStores
-3 Comporents
-3 Vanables

-3 UserTypes
“ Libranes

(-2 =math Partitions

T8 Catalogview I] File'\-"iewl 1 |

Ready

|l

4.3.4 Opening a SuperBlock in the Editor

After loading a model, you can open a SuperBlock in the editor to edit or view it:

1. Ifneeded, load the predator-prey model as described in 4.3.3 Loading a Model
File, p.57.

2. To see a list of all SuperBlocks currently loaded, click in the left pane on the
SuperBlocks node. A listing of the SuperBlocks appears in the right pane.

3. In the right pane, double-click the Predator_Prey SuperBlock.

This opens an Editor window and displays the contents of the SuperBlock (see
Figure 4-7).

58

4
SystemBuild

Figure 4-7 Predator_Prey SuperBlock Displayed in Editor Window

Continuous SuperBlock Inputs Cutputs
Predator Prey 1 2

Koy to Dlagram

¥dot Fred = -a . Xpred + k . b . Xpred . Xprey
Hdot Frey = o . Xprar . b . Xpred . Xpray

a» 0.0 Fradator sxcass death rate, an loput
B> 0.0 Foray or orazing factor, dafanlt = 2

0 = Excass birth rate of preay population, dsfanlt
k <= 1 = BEfficiency factor, paramster, default
Xdot Frad > 0 = Fradator Fopulation, default =

xdEt_Prey > 0 = Fray Population, defanlt = 1

(=2 =1
o< = 0.3
1

d » 0= Initial Proedator Population Paramster, default = 1.

Froy Integ
[1]
1 X Pray o
a ! ‘ E
xo=_1 1 ([kot Frey
+
b Xpred times Xprey | _
2 13
b_timas Xpra b_x Xpred x Xpray
Efficiency factor
14
k
4+ 13
¢y kdot Prad
Fred Integ
1]
1 Erad =
I Le s
K=

59

MATRIXy 7.0

Getting Started Guide

4.3.5 Simulating the Model from the Xmath Commands Window

After a model is loaded, you can simulate it. This section describes performing a
simulation directly from the Xmath command area and also from the SystemBuild
Editor. Load the predator-prey model as described in 4.3.3 Loading a Model File,
p.57.

To simulate the predator-prey model from the Xmath commands area:

1.
2.
3.

60

Activate the Xmath window by clicking on the Xmath window’s frame.
Click within the Xmath command area.

Create a time vector and assign the input vector to a variable:

t=[0:.01: 50];
u=ones(t);

Input the value of the efficiency factor k:
k=.333;

In the Xmath command area, type:
y=sim("Predator_Prey" t,u,{graph});

Watch the log area of the Xmath window as the model is analyzed and
simulated. The simulation output plot, which appears in a separate window,
is shown in Figure 4-8

4
SystemBuild

Figure 4-8 Plot of a Predator-Prey Simulation Output

Tme

To simulate the model from the SystemBuild Editor:

NOTE: If you performed the simulation from the Xmath command line above and
haven’t deleted the variables, you can start at Step 5.

1. Activate the Xmath window by clicking on the Xmath window’s frame.
2. Click within the Xmath command area.

3. Create a time vector and assign the input vector to a variable:

t=[0:.01: 507"
u=ones(t);

4. Input the value of the efficiency factor k:
k=.333;

5. Activate the Predator_Prey SuperBlock SystemBuild Editor (see 4.3.4 Opening
a SuperBlock in the Editor, p.58).

61

MATRIXy 7.0
Getting Started Guide

6. In the SystemBuild Editor, select Tools - Simulate from the pull-down menu.
The SystemBuild Simulation Parameters dialog appears (see Figure 4-9).

Figure 4-9 SystemBuild Simulation Parameters Dialog

SystemBuild Simulation Parameters |
Top Level SuperBlock |hiputs Outputs
Predator_Prey 1 2

Farameters | Numericsl Olutput Hepurtingl Initializationl

Time “ectar ariable It Sim Type IFIuat vI

Input D ataariable IU Miritd 2 Variablel
Scheduling IDefauIt vI

Output Y ariable Iy

Block Parameters IXmalh W ars j ™ Interactive

Integration Algarithm I‘u"ariable Futta-berzon j = Backaround
[~ Tupecheck

[1].4 | Cancel | Fezet | Help |

7. In the SystemBuild Simulation Parameters dialog, enter t in the TimeVector/
Variable field, u in the Input Data Variable field, and y in the Output Variable field;
enable the Plot Outputs check box, and click OK.

You can monitor the log area of the Xmath window as the model is analyzed
and simulated. The simulation output plot appears in a separate
window(Figure 4-8).

4.3.6 Deleting a SuperBlock

To delete a SuperBlock:

From the Catalog Browser (either pane, provided the SuperBlock names
appear), select a SuperBlock. Then select Edit - Delete.

A CAUTION: Deletion of SuperBlocks cannot be undone.

62

4
SystemBuild

NOTE: Once you delete a SuperBlock, it is no longer visible to the Catalog
Browser. Any SuperBlock that references the deleted SuperBlock, contains an
“Undefined” SuperBlock indicator.

4.3.7 Navigating a SuperBlock Hierarchy

The use of hierarchy in your SystemBuild models is crucial to the successful
implementation of a system. As mentioned earlier, you use SuperBlocks to create
a model hierarchy. This section presents some of the methods for navigating up
and down a SuperBlock hierarchy.

You need a fresh start for this exercise:

1. Delete all of the SuperBlocks you may have created, or exit the Catalog
Browser (File - Exit), and restart SystemBuild.

2. Load a model with a SuperBlock hierarchy:

From the Xmath command area, enter:

load "$SYSBLD\demo\f14_demo\fl4new.cat";

Navigating with the Catalog Browser

When you navigate with the Catalog Browser, you use the left pane of the
browser to expand and collapse SuperBlocks within the tree.

After the f14 model is loaded, the Catalog Browser displays the types of catalog
objects (SuperBlocks, BetterState Charts, and so forth) in the left pane. Click on
the Model folder icon to see a full list of model objects, including SuperBlocks, in
the right pane (see Figure 4-10).

63

MATRIXy 7.0

Getting Started Guide

Figure 4-10 Catalog Browser After Loading the f14 Model

Expand/Collapse
Indicator

E—ﬂs_}lslemﬂuild - Catalog Browser H=] E3
File Edit “iew Toolz Options “ersioning ‘Window Help
ENEEEEEENE S E R
|Catalog: b ain |C0ntents of Mair: [tModel]
MHame | CatTvpe | Inputs | Outputs | Peri
1 contral 5B [Continuous) 2 1
A Drpden wWind Gust... 5B [Continuous) 0 2
{14 5B [Continuous) i] 4
& BetterSt_ate Eharts I Hierarchical Model 5B [Continuaus) 1 4
(@3 State Diagrams ¥ longitudinal dynami... 5B [Continuous) 4 3
@3 DataStores 1 sensor fitering 5B [Continuous) 2 1
£3 Components
&3 Yanables
&3 UserTypes
“ Libraries
[]--% #math Partitions
T Catalogyiew I | Fi|EViEW| | | _DI
Ready 4

Notice the expand/collapse indicator for the Model folder (left pane). Plus (+),

indicates that the folder is collapsed (and at least one additional hierarchical layer
can be expanded).

To navigate from the Catalog Browser:

1. Expand the hierarchy of the Model folder in the left pane by double-clicking
the folder or by single-clicking the expand indicator, the plus (+) sign.

Continue expanding each level of the model (see Figure 4-11).

3. Open the SuperBlock named sensor filtering by double-clicking the
SuperBlock in the right pane.

An Editor window appears with the selected SuperBlock on view. You can edit
the contents of the SuperBlock.

To edit another SuperBlock, return to the Catalog Browser, and double-click
any SuperBlock in the right pane.

64

4
SystemBuild

Figure 4-11 Expanded Hierarchy of the f14 Model

Eﬁystemﬂuild - Catalog Browser M= 3
File Edit “iew Took Options Yersioning Window Help

8|D|lS|E|@||=] =] L= x| 2= 2

|Eatalug: bd 2in ICDntentS of b ain:[kModel]
Eﬁ ET &1 | Name | CatType | Inputs | Outputs |
=33 Model 1 contral SE [Comtinuous) 2 1
E"D' f14 13 Diyden 'Wind Gust... 5B [Continuous] 1] 2
- Hierarchical Model o4 5B [Continuous) 0 4
D control : 1 Hierarchical Model 5B [Continuous] 1 4
ﬂ D[-"'E!en W|nc| Eust.hf 1 longitudinal dynami.. SB [Continuous) 4 K]
D Il:ungltul:l!nal.dynamlc: 1 zenson filtering SB [Continuoug) 2 1
oA genzor filkenng
-3 SupsBlocks —
423 BetterState Charts
-2 State Diagrams
-3 DataStores -
A T Aramenanbe
1] | R
T Catalogview I | F“E"*"'iEWI 1| |

|l

Ready

Navigating from the Editor Window
You can navigate up and down a hierarchy from within the Editor window using
menu items.
To navigate from the Editor window:

1. From the Catalog Browser, open the sensor filtering SuperBlock (see Step 1-
Step 3 above).

2. With the Editor window, select View - Parent - Hierarchical Model to view this
SuperBlock’s parent.

The Editor window now displays the SuperBlock named Hierarchical Model.

3. To move down the SuperBlock hierarchy in the Editor window, click the
desired SuperBlock icon; then select Edit - Open.

The Editor window now displays the selected SuperBlock.

65

MATRIXy 7.0

Getting Started Guide

NOTE: The MATRIXy demo package includes a simulation of the F14 model.

To run the demo simulation:

1.

Enter the command demo from the Xmath Commands window.
The Xmath Demos dialog appears.
Enable the SystemBuild Demos... radio button and press OK.

If the Save SysBId & Xmath workspace dialog appears, enable the Yes->Save
radio button and click OK.

The SystemBuild Demos dialog appears.
Enable the F14 Jet Simulation radio button and click OK.

Follow the prompts to run the demo.

4.3.8 Printing from the Editor Window

SystemBuild provides the standard Windows Print dialog for printing from the
Editor window on Windows operating systems.

To print the contents of an Editor window:

66

Select File - Print.

Printing uses the settings you last made in the Page Setup dialog, also
available from the File menu. The default printer is specified by the
$PRINTER environment variable.

4
SystemBuild

4.4 SystemBuild Tutorial

This section presents basic procedures used in the design, development, and
simulation of SystemBuild block diagrams:

» Designing a Block Diagram

« Creating and Editing a Block Diagram

= Simulating a SuperBlock

« Encapsulating a SuperBlock

« Using a BetterStateChart Block to Model Events

NOTE: This tutorial is designed to lead you through the construction of basic and

" intermediate SystemBuild block diagrams and BetterState charts. If instead, you
wish to examine the completed models, the block diagrams and state charts
constructed in this tutorial can be loaded into the CatalogBrowser by executing the
following commands from the Xmath Commands window.

load "$SYSBLD\examples\gs_tutorial\vibel.cat";

The vibel catalog contains a solution of the basic spring-mass damper
constructed in the first four sections of the SystemBuild tutorial. This catalog can
be used to skip ahead to 4.4.5 Using a BetterStateChart Block to Model Events.

load "$SYSBLD\examples\gs_tutorial\vibe2.cat";

vibe2 contains a solution of the intermediate spring-mass damper model with
event modeling using the BetterState block.

load "$SYSBLD\examples\gs_tutorial\vibe3.cat";

The tutorial concludes with a challenge exercise. vibe3 contains a solution.

4.4.1 Designing a Block Diagram

To develop a useful block diagram representation of a physical system, you need
to know:
= the analytic behavior of the physical system components.

= how block diagram elements correspond to physical system components.

= how to use SystemBuild editors and dialogs to develop a block diagram.

67

MATRIXy 7.0
Getting Started Guide

The Spring-Mass Damper Model

In this tutorial, you develop a block diagram representation for a physical system
incorporating a spring-mass damper. The following well-known equation is
derived by making standard assumptions about the system behavior:

F(t) = mx(t) + cx(t) + kx(t) (4-1)

Equation 4.1 follows the common convention of indicating time derivatives by
dots. F denotes the external force applied to a mass m. The spring introduces a
force proportional to and opposite its elongation. The scalar value k depends on
the spring, and is called its stiffness. Motion of the mass is damped by a force
proportional to and opposite its velocity. The scalar value c is referred to as the
damping constant.

Equation 4.1 provides a mathematical model that can be represented directly by a
SystemBuild block diagram. Alternatively, the system analysis that produced the
equation can be used to develop a block diagram. But first you need to know how
SystemBuild blocks model physical systems.

SystemBuild Block Basics

SystemBuild block diagrams are composed of interconnected blocks. Most blocks
in a block diagram receive input signals and produce output signals. A signal is a
scalar value that can vary over time. The process performed by a given block to
produce its outputs may depend on user-defined properties.

Blocks are combined in a block diagram by connecting outputs to inputs. A group
of interconnected blocks can collectively define a SuperBlock. Most SuperBlocks
also have input and output signals connected to one or more of its blocks. A
SuperBlock can be simulated by specifying each of its input signals with respect
to some time vector. A SuperBlock can be a building block in a higher-level
SuperBlock. A SuperBlock hierarchy is defined in this manner.

In this tutorial, you use several basic SystemBuild block types to develop the
block diagrams of a SuperBlock hierarchy. The introductory block information
included here is intended to motivate that development; it is not a complete
description of the capabilities and options of the block types.

68

4
SystemBuild

Constant Block

A Constant block has no input signal. Its output signal is a constant.

ElementDivision Block
The output signal of an ElementDivision block is input signal #1 divided by input
signal #2.

Integrator Block
The output signal of an Integrator block is the integration over time of its input

signal. The initial value of the output signal of an Integrator can be defined, and
an Integrator can be triggered to reset its output signal to a specified value.

Gain Block
The output signal of a Gain block is its input signal multiplied by a constant.
Summer Block
The output signal of a Summer block is the sum of its input signals. Each input
signal has a sign which determines if it added to, or subtracted from the output
signal.
ElementProduct Block

The output signal of an ElementProduct block is the product of its input signals.

ZeroCrossing Block

During a simulation, a ZeroCrossing block detects the instant at which its input
signal crosses zero. The simulation is recomputed to include this additional time
point. The ZeroCrossing block output signal toggles between zero and one at such
crossings.

69

MATRIXy 7.0
Getting Started Guide

BetterState Block

A BetterState block implements a finite state machine. Input signals trigger state
transitions. (When a BetterState block is used in a continuous SuperBlock, its
events must be triggered by ZeroCrossing blocks.) Output signals are generated
by user-defined code associated with states and state transitions.

Getting Started on a Design

Identifying the inputs and outputs of the top-level SuperBlock is a good way to
start a design. For the spring-mass damper, there is one input—the external force
applied to the mass. The outputs of a top-level SuperBlock are the signals you
choose to monitor for the purpose of observing the behavior of the modeled
system. Position and velocity of the mass are useful choices here.

Next, make a rough plan for modeling and connecting elements of the physical
system. For the spring-mass damper, you have force acting on a mass. That
determines an acceleration that can be integrated to give velocity and position.
The velocity and position can be used to determine the spring and damping
components of the force.

In developing a block diagram, try to identify subsystems that can be built
independently. Simulating submodels can help to verify that a complex
SuperBlock hierarchy simulation is valid. Also, by encapsulating the subsystems
in your area of interest, you can optimize reuse in subsequent designs.

In this tutorial, you start building the spring-mass damper by modeling force
acting on a mass.

70

4
SystemBuild

4.4.2 Creating and Editing a Block Diagram
A block diagram is the graphical representation of a SystemBuilld model. To
create and edit a new block diagram:

Create a SuperBlock.

Add blocks to the block diagram (of the SuperBlock).

Edit block properties.
Connect blocks to each other.

Connect blocks to SuperBlock inputs and outputs.

SANER L I

Save the SuperBlock

NOTE: Many of the operations described in these procedures can be
accomplished by alternative methods and shortcuts. To simplify the instructions,
only one method is specified in most cases.

Creating a SuperBlock

To create a new SuperBlock called vibe:
1. Start Xmath as described in 3.2.3 Starting Xmath, p.34.

2. In the Xmath command area, type:
build

After loading, the SystemBuild Catalog Browser is displayed. If necessary,
click on the bar at the top of the window to make it active and bring it to the
front.

3. In the Catalog Browser, create a new SuperBlock by selecting
File -~ New - SuperBlock.

The SuperBlock Properties dialog is displayed. The Attributes tab is selected and
all properties of the SuperBlock are set to their default values. (Figure 4-12
shows the SuperBlock Properties dialog as it appears during Step 4 below).

71

MATRIXy 7.0
Getting Started Guide

Figure 4-12 SuperBlock Properties Dialog

SuperBlock Properties E |

M arme Inputs Cutputs
e I =i =
! =i 2 =1

Altributes |EDI:IE | Inputs | Dutputs | Document | Comment |
— Trigger Options

Type I Continuous j
it Hequrement IEI

[mput M aming IInherll Higher-Lewvel Namesj Ot Pasting I."l'«fter e j
[Froum |l Il:l r- . ; Parent =
K = Trigger Sigrial I aren J
— Discrete Ophions e —

SamplePeriad IU Class IStandard ﬂ
Sample Shew IEI Intermupt I

Eratle Signal IParent j EDE [rteface =

ok Cahizel | Help |

4. With the SuperBlock Properties dialog:

a. Click in the Name field; name the new SuperBlock vibe.
b. Verify that the Type of the SuperBlock is Continuous.

c. Set the number of Inputs to 1.

d. Set the number of Outputs to 2.

e. Click OK to accept current values and close the dialog.

A SuperBlock Editor is displayed for the new SuperBlock. The
information bar at the top contains the type, name, and number of inputs
and outputs. The area in which block diagrams are constructed is empty
(see Figure 4-13).

72

4
SystemBuild

Figure 4-13 SuperBlock Editor (Initial View)

5 vibe Scope: Main _ (O] %]
File Edit “iew Connect Tools Optons Window Help

| @|5e| W] [Bl@] x| mlE]]| Bl 2]z <[
2l=l== = = 7 A

Continaous SuperBlock Inputz Outputs
wibe 1 2

[»

-
1| | »

Ready L

Adding Blocks to the Block Diagram

In this section, you add four blocks to the block diagram of the vibe SuperBlock: a
Constant block, an ElementDivision block, and two Integrator blocks.
To add a Constant block to the block diagram:

1. Open the Palette Browser by selecting Window — Palette Browser. Position your
windows so that the Palette Browser is alongside the Editor.

2. In the Palette Browser, select the Matrix Equations palette.

73

MATRIXy 7.0
Getting Started Guide

3. With MB1, drag and drop a Constant block from the Matrix Equations palette
into the Editor.

In the same manner, add an ElementDivision block from the Algebraic palette, and
two Integrator blocks from the Dynamic palette.

Blocks are positioned in a block diagram by dragging with MB1. Position the
blocks as in Figure 4-14.

NOTE: The block ID is displayed in the upper right corner of each block. Your ID
numbers might not match those in Figure 4-14.

Figure 4-14 Adding Blocks to vibe

Continaous SuperBlock Inputs Outputs

wibe 1 2
2 [12] [2]
1 1
3 3
X0= 10 ®0= 10
[1]
H -
1

Editing Block Properties

Each block in a block diagram contains properties that can be edited to adjust
aspects of its performance. In this section, you open the Block Properties dialog for
each block in vibe and edit various properties.

To edit block properties for the Constant block:

1. In the Editor, move the mouse cursor over the Constant block (the left most
block as shown in Figure 4-14) and press the Enter key.

The Constant Block properties dialog is displayed. The Parameters tab is
selected and all properties are set to their default values. (Figure 4-15 shows
the Constant Block Properties dialog as it appears during Step 3 below).

74

4
SystemBuild

2. Click in the Name field; name the Constant block mass.

Figure 4-15 Constant Block Properties Dialog: Parameters Tab

Constant Block E3 |

MHame | ks Outputs 1D
= = N - —
Paramneters | Dulputsl Documenll Eommentl lean | Displayl
Parameter Yalue % warniable |ﬂ
ConztantM ame Ik J
Constanfyalue 1.0 m =

— Congtanth ame

Ok LCancel | Help |

3. Verify that the Parameters tab of the Block Properties dialog is selected (see
Figure 4-15).

a. Locate the field in the Parameter table, in the Value column, and the
ConstantName row. Click in that field and replace H with the name mass.

b. Locate the field in the Parameter table, in the % variable column, and the
ConstantValue row. Click in that field and type m.

NOTE: The % variable property allows you to set parameters of your model by
assigning values to corresponding variables in the Xmath workspace. Before
simulating this model, you set the mass parameter in the Xmath command
window by typing an assignment to the Xmath variable m (see Step 3, p.86). In this
way you can simulate the model with different parameter settings without editing
the block diagram.

75

MATRIXy 7.0
Getting Started Guide

Figure 4-16 Constant Block Properties Dialog: Outputs Tab

Constant Block [x| |

Mame | FpEuts Outputs 1D
Imass IEI j I'I j |1 j
Parameters Dutputs |D|:u:ument| Cu:ummentl lcon | Displa_l.Jl
Output Label Output Mame Output Scope Outp
1 azs Local -
a| | *
Output DataType Frediz D Output UeerType
z Wt
Float j ID j r Pratectiar j

(1] LCancel | Help |

4. Click the Outputs tab. (see Figure 4-16).

Locate the field in the Outputs table, in the Output Label column, and row 1.
Click in that field and type mass.

5. Click the Display tab (see Figure 4-17).
Enable the Show Output Labels check box.

NOTE: When the Show Output Labels check box is enabled for a block, the block’s
output labels are displayed on its output connectors.

6. Click OK to accept current values and close the dialog.

76

4
SystemBuild

Figure 4-17 Constant Block Properties Dialog: Display Tab

Constant Block E3

Mame [mputs Outputs 10
Imass ||:| j |1 j |1 j

Parametersl Dutputsl Du:u:umentl Enmmentl lcon Dizplay |

— Block Input Attributes — Block General Attrbutes
| Pt s I Scalar j leon Type I Special j
[Pt Face I Left j Calor I 1] j

Shaow Input Signals T

Riatation I Marmal =]

— Block Output Attributes -
Output Ping I S calar j Direction I Forward j
Output Face — |Right =] Name Location [Top =]

2 v Show 1D &

Linestyle ISDlid

Lef Lo

Arrowstyle IDutward

OF. LCancel | Help |

Follow the instructions below to edit block properties for the remaining blocks in
vibe. You give each block a name, label its outputs, and enable the Show Output
Labels check box. For additional detail, refer to steps 2, 4, and 5 above in the
instructions for editing properties in a Constant block.

You also set additional properties as noted in the instructions.
To edit block properties for the ElementDivision block:

1. In the Editor, move the mouse cursor over the ElementDivision block (second
block from the left as shown in Figure 4-14, p.74) and press the Enter key.

The ElementDivision Block properties dialog is displayed. The Inputs tab is
selected and all properties are set to their default values. (Figure 4-18 shows
the ElementDivision Block properties dialog as it appears during Step 3 below).

2. Name the block Feqma.

77

MATRIXy 7.0

Getting Started Guide

4.
5.
6.

Feqma divides force by mass to calculate acceleration. Naming block inputs
can make block connections easier.

In the Input Name column: name input 1 force; name input 2 mass.
Click the Outputs tab and set the Output Label to acc.
Click the Display tab and enable the Show Output Labels check box.

Click OK to accept current values and close the dialog.

Figure 4-18 ElementDivision Block Properties Dialog: Inputs Tab

ElementDivision Block
Mame |nputs — Outputs -] —
IFeqma |2 — I'I — |2 —
Inputs |I:Iutpul3| Dcu:umentl Eommenll ([etaly I Displa_l,ll
ft Input M anme Input Signal Input Face
1 force Left -
2 |masd Left -

ak. LCancel | Help |

To edit block properties for the first Integrator block:

1.

78

In the Editor, move the mouse cursor over the first Integrator block (second
block from the right as shown in Figure 4-14, p.74) and press the Enter key.

The Integrator Block properties dialog is displayed. The Parameters tab is
selected and all properties are set to their default values. (Figure 4-19 shows
the Integrator Block properties dialog as it appears during Step 3 below).

Name the block accToVel.

4

SystemBuild
Figure 4-19 Integrator Block Properties Dialog: Parameters Tab
Integrator Block E
MHame |nputs - Outputs N States = [n] —
[tiecTavel f1 = [= | = 12 =
Parameters |Input$| Dutputsl Statesl Du:u:umentl D:ummentl leon | Displa_l,ll
Parameter Yalug % wariable [ﬂ
Order 1
Highest Reset 1
Fain 1.0
Zera |nitial States Mo hd |
Initial States 1] Y |~
— Initial States
FRows: 1 Columng: 1 Walue: wEn

Ok LCancel | Help |

3. Verify that the Parameters tab of the Block Properties dialog is selected (see
Figure 4-19).

Scroll down in the Parameter table to access the field in the % variable column,
and the Initial States row. Click in that field and type v0.

4. Click the Outputs tab and set the Output Label to vel.
5. Click the Display tab and enable the Show Output Labels check box.
6. Click OK to accept current values and close the dialog.

Repeat the previous steps for the second integrator block. Name it velToPos. Give
it an Initial States % variable named p0. Set the Output Label to pos.

After Editing Block Properties your block diagram should resemble Figure 4-20.
The short lines extending out from the sides of the blocks are input and output
pins. Each output pin is now labeled.

79

MATRIXy 7.0
Getting Started Guide

Figure 4-20 Block Diagram after Editing Block Properties

Contitmous SuperBlock Inputs Outputs

vibe 1 2

Feqma accToVel welToPos

2 [12] [3]
a L | wel a L | pos
2 2
nass x0= 3w ¥0= %p0
[L]

nass | mass

-

=

Connecting Blocks

When two blocks are connected, an output signal of one becomes the input signal
of the other (a block cannot be connected to itself). Connections between the
blocks of a SuperBlock are called internal connections. An internal connection is
directed from an output pin of the source block to an input pin of the destination
block.

NOTE: A source block output pin can be connected to zero, one, or more than one
destinations. However, a destination block input pin can be connected to at most
one source: either a source block output pin or a SuperBlock input.

To connect the Constant block to the AlgebraicExpression block:
1. Click the Constant block with MB2 (middle mouse button).
2. Click the AlgebraicExpression block with MB2.

The Connection Editor is displayed (see Figure 4-21).

« Source block information is displayed on the left.

« Destination block information is displayed on the right.

« Output labels and input names are displayed when available.

80

4
SystemBuild

. Data types are displayed when available; F (Float) is the default.

« Source block outputs are numbered in a column opposite the numbered
inputs of the destination block. Click on the numbers with MB1 to add
and delete connections.

Figure 4-21 Connection Editor

i Connection Editor M=l E3

ma==_1 Feod_ 2
(0) ()

@ <forcex
27 <masss

"masz"™ F @

From,To :

Cancel m Del Done

3. Verify that the Add button is highlighted. With MB1, click output 1 (left
column), and click input 2 (right column). A line is drawn to indicate the
connection as shown in Figure 4-22.

4. Click Done to accept the connection and close the dialog.

Figure 4-22 Adding a Connection with the Connection Editor

i Connection E ditor [_ (O] x|
ma==_1 FeoMl_ 2
{0} (0}
@ <force-
"mass" F
Lmassr
From,To :
Cancel m Del Done

81

MATRIXy 7.0
Getting Started Guide

Complete the internal connections as shown in Figure 4-23. In each case, use MB2
to click the source block, and then the destination block.

Figure 4-23 Block Diagram after Internal Connections

Contimaous SuperBlock Inputs Outputs

vihe 1 2
Feqma accToVel welToPos
2 [12] El

1 vel . L | oS
= =

nazs x0= 5w ®0= 5p0

1]
nass

I

NOTE: When only one possible connection can be made between the source and

destination blocks, the connection is made without displaying the Connection
Editor.

Connecting SuperBlock Inputs and Outputs

Connections from SuperBlock inputs to blocks, and from blocks to SuperBlock
outputs are called external connections. An external input connection is directed
from a SuperBlock input to an input pin of the destination block. An external
output connection is directed from an output pin of the source block to a
SuperBlock output.

NOTE: A SuperBlock input can be connected to zero, one, or more destination

blocks. However, a SuperBlock output must be connected to exactly one source
block.

82

4

SystemBuild
Figure 4-24 External Input and Output Flags
[13] (23]

1 1
- 1 —

= =

x0= 0 ¥l= 0

External Input External Output

External input and output connections are represented in a block diagram by
flags containing the number of the corresponding input or output. Figure 4-24
shows typical external connection flags: a SuperBlock input 1, and a SuperBlock
output 2.

In this section, you connect the external input and output signals for the vibe
SuperBlock.

To connect the vibe SuperBlock input to the Feqma ElementDivision block:

1. Move the mouse cursor to an open space in the editor (not over any block),
and click with MB2.

2. Click the ElementDivision block with MB2.

The Connection Editor is displayed. (The layout of information is analogous
to that displayed for internal connections, as shown in Figure 4-21).

3. Verify that the Add button is highlighted. With MB1, click external input 1 (left
column), and click block input 1 (right column). A line is drawn to indicate
the connection.

4. Click Done to accept the connection and close the dialog.
To connect the accToVel Integrator block to the vibe SuperBlock output 1:
1. Click the accToVel Integrator block with MB2.

2. Move the mouse cursor to an open space in the editor (not over any block),
and click with MB2.

The Connection Editor is displayed. (Again, the layout of information is
analogous to that displayed for internal connections.)

3. Verify that the Add button is highlighted. With MB1, click block output 1 (left
column), and click external output 1 (left column). A line is drawn to indicate
the connection.

83

Figure 4-25

MATRIXy 7.0
Getting Started Guide

4. Click Done to accept the connection and close the dialog.

Repeat the previous steps to connect the velToPos Integrator block to vibe
SuperBlock output 2.

When complete, your block diagram should resemble Figure 4-25.

NOTE: The current block diagram models force acting on a mass. The spring-mass
damper model will be completed in 4.4.4 Encapsulating a SuperBlock, p.88.

Block Diagram after External Connections

Contitmaous SuperBlock Inputs Outputs

vibe 1 2
Feoqma accToVel velToPos
2 [L2] [2]
1 wel . = 1 pios
3 3
nazs ¥0= %v0 H0= %p0
mass
*m

Saving a SuperBlock

To avoid loss of your work, you should save your block diagrams at regular
intervals during development. In this section, you save the vibe SuperBlock.

NOTE: SuperBlocks and BetterStateChart blocks can be saved individually, or
grouped in catalogs. The method described here saves all SuperBlocks and
BetterStateChart blocks in the current catalog of the Catalog Browser to a single
catalog file.

84

4

SystemBuild

To save the vibe SuperBlock to a catalog file:

1. Make the Editor the active window and update the vibe SuperBlock by

selecting File - Update.

2. Make the Catalog Browser the active window and refresh its contents by
selecting View - Update. A list of SuperBlocks in the current catalog is

displayed on the right.

3. Select File - Save As.

The Save As dialog is displayed. (Figure 4-26 shows the Save As dialog as it

appears during Step 5 below).

4. Select a directory in which to save SuperBlock catalogs.

Figure 4-26 Save As dialog

Save As

Save jn |BSEcalalogs | gl I_

File name: Ivibe.caﬂ

Save az hpe: IEatalng Files [* cat;* dat* mdl;*. sbd” xmd) ﬂ

u] 9 LCancel | Help |

I E3

— SuperBlocks——
(O |

" Selected

—#math Data
= Al

" Mone

— Uzer Type
e Al

= Maone
— Format
& ASCI
" Binary

5. Click in the File name field and type vibe.cat (see Figure 4-26).

NOTE: If you type a file name with no extension, the default extension .dat is

appended to the file name when the file is saved.

6. Click OK to save the file and close the dialog.

85

MATRIXy 7.0
Getting Started Guide

4.4.3 Simulating a SuperBlock

In this section, you simulate the SuperBlock vibe. The current model applies an
input force to a mass. The resulting velocity and position of the mass are output.

Simulations proceed with respect to a user-defined time vector. Because vibe is a
continuous SuperBlock, its simulation algorithms are relatively independent of the
granularity of the time vector sequence. However, the input and output of a
continuous simulation are indexed by its time vector, so the granularity must
accommodate those factors.

To simulate vibe, an input force vector is specified whose elements correspond to
those of the time vector. Here, you model the force of gravity. Therefore, the input
signal is constant with respect to time.

There are three % variable parameters to define: the mass m, the initial velocity v0,
and the initial position p0. In this tutorial, you assign values with MKS units.

To simulate the SuperBlock vibe from the Xmath command area:

1. Define a time vector. In the Xmath command area, type:

t=[0:0.01:5];

NOTE: Remember to type the semicolon to suppress output.

Time must be specified in a column vector. You have created a regular column
vector with 501 elements: 0,0.01,0.02,...,4.99,5.00. The simulation will proceed
for 5 seconds, with a computational granularity of 0.01 seconds.

2. Define an input force vector (MKS gravity is approximately -9.8 meters/sec?);
u=-9.8*ones(t);

The input variable u is constructed to have the same dimensions as the time
vector t. Here, u is a column vector of 501 elements.

3. Specify a mass of 1 kilogram, starting at rest and position 0:

3
Tl

1
0=0;
0=0;

<

o]

4. Execute the simulation:

y=sim("vibe" t,u,{graph});

86

4
SystemBuild

Information about the simulation is displayed in the Xmath log area. When
the simulation completes, velocity and position are plotted in an Xmath
Graphics window (see Figure 4-27).

Figure 4-27 Simulation Results

2% ¥math Graphics: Unbound Graph Object

File Edit “iew Opton: Tool: Windows

LN AN =] (= W N N =T = =]
1]

-0

Tme

The simulation result y is a pdm consisting of 501 row vectors. Each vector has
two scalar elements, a velocity and a position. You can inspect the velocity and
position values at a given time by computing its position in the pdm. For
example, to see the result at time 3.83 seconds, type:

y(3.83*100+1)

Exercise the model by simulating other values for the parameters m, v0, and p0.
You can also change the input force. Try u=cos(4*t);.

87

MATRIXy 7.0

Getting Started Guide

4.4.4 Encapsulating a SuperBlock

In this section, you encapsulate a SuperBlock and develop a hierarchical block
diagram.

To encapsulate a SuperBlock:

1.

Make the Editor the active window and update the vibe SuperBlock by
selecting File - Update.

Select the ElementDivision block and both Integrator blocks of the block
diagram by holding down the Control key and clicking each in turn with MB1.
A heavy rectangular border indicates that a block is selected.

Select Edit -~ Make SuperBlock. The block diagram now shows a new
SuperBlock block, along with the mass Constant block.

To edit properties of the new SuperBlock block:

1.

88

In the Editor, move the mouse cursor over the SuperBlock block and press the
Enter key.

The SuperBlock Block properties dialog is displayed. The Parameters tab is
selected and all properties are set to their default values. (Figure 4-28 shows
the SuperBlock Block properties dialog as it appears during Step 3 below).

Click in the Name field; replace the default name with Newton.
Click the Display tab (see Figure 4-28).

Locate the drop-down combo box labeled Icon Type. Change its value to User.

4

SystemBuild
Figure 4-28 SuperBlock Block Properties: Encapsulation
SuperBlock Block I
M ame | ot ItEts: o L
[Mewton |2 = |2 = |13 =
Instance Mame #math Partition
Parametersl Inputsl Elutputsl Eommentl |con Display |
i~ Block Input Attributes i Block General Attributes
Input Ping IScaIar j lcon Twpe
Input Face ILeft j Calor I i j
Shaow Input Signals [
put =1 Rotation I Mormal j
 Block Qutput Attributes
: Direction I Farward j
Output Fins IScaIar j
Output Face IF!ight | Mame Location ITDI:' 2
Show Output Label: W Propagate Labels v Show D W
Linestyls [Siid =]
Arrowstyle I Qutward j

ar Cancel | Help |

4. Click OK to accept current values and close the dialog.

The Superblock editor now displays the mass Constant block, and the Newton
SuperBlock block. Position and resize the blocks so that they resemble the block
diagram displayed in Figure 4-29. Recall, blocks are positioned by dragging with
MB1.

To enlarge the Newton SuperBlock block, move the mouse cursor over the block,
and press e twice.

To reduce the mass Constant block, move the mouse cursor over the block, and
press r twice.

89

Figure 4-29

MATRIXy 7.0
Getting Started Guide

Newton SuperBlock Block

Continaous SuperBlock Inputs Outputs

vihe 1 2
Newton
[13]

—— el T
nass

1

Ll £as

mf‘zs 2%2% | Continuous
%

To complete a block diagram representation of a damped spring, a few more
blocks are needed. A solution is shown in Figure 4-30. Two Gain blocks have been
added. One produces the damping force by multiplying velocity by the damping
constant. Position and stiffness are used by the other to determine the spring
force. These forces are subtracted from the vibe input force by a Summer block
that passes the resultant force to the Newton SuperBlock block.

To implement the damped spring representation:
1. Add blocks to the block diagram.

Open and position the Palette Browser. Select the Algebraic palette. With MB1,
drag and drop a Gain block and a Summer block into the Editor.

2. FHlip, reduce, and duplicate the Gain block.
Move the mouse cursor over the Gain block and press f r d (one key at a time).

You now have two gain blocks that have been flipped horizontally. Input pins
are now on the right; output pins are on the left.

90

4
SystemBuild

Figure 4-30 Block Diagram for Damped Spring

Continuous SuperBlock Inputs Outputs
wibe 1 2

damping

mass EEE] Continuous
tm
stiffness
2
stiffness %k z

Position the new blocks as shown in Figure 4-30.
4. Edit properties for the Summer block.
a. Move the mouse cursor over the Summer block and press the Enter key.

The Summer Block properties dialog is displayed. The Parameters tab is
selected and all properties are set to their default values. (Figure 4-31
shows the Summer Block properties dialog as it appears during Step e
below).

b. Name the block forces.
c. Change the number of inputs to 3.

d. In the Parameter table, click in the field in the Value column, and the
Number Branches row. Change its value to 3.

e. In the Parameter table, click in the field in the Value column, and the
Signs(+1,-1) row. Change its value to -1,1,-1.

91

MATRIXy 7.0
Getting Started Guide

Figure 4-31 Summer Block Properties Dialog

Summer Block |
MHame Inputs — Outputs — 1D N
Iforces |3 — I'I — |3 —
Farameters ||n|:|ut3| Dutputsl Du:nc:umentl Eommentl leon I Displa_l,ll
Parameter Yalue % warniable |
Muriber of Branches 3
Signzf+1, -1] A1

— Mumber of Branches
Rows: 1 Colurmig: 1 Walus: =xs

Ok LCancel | Help |

f. Click the Inputs tab and name the inputs: damping, external, stiffness.
g. Click the Outputs tab and label the output: force,

h. Click the Display tab, change the value of Icon Type to User, and enable the
Show Output Labels check box.

i. Click OK to accept current values and close the dialog.

92

4
SystemBuild

5. Edit properties for the Gain blocks.

You give each Gain block a name, a % variable assignment, label its output,
and enable the Show Output Labels check box. For additional detail, refer to the
instructions for setting these properties in a Constant block, in the section
Editing Block Properties, p.74.

a. Name the upper Gain block stiffness, give it a % variable named k, label
its output stiffness, and enable the Show Output Labels check box.

b. Name the lower Gain block damping, give it a % variable named c, label
its output damping, and enable the Show Output Labels check box.

6. Make block diagram connections as shown in Figure 4-30. For additional
detail, see Connecting Blocks, p.80 and Connecting SuperBlock Inputs and
Outputs, p.82.

7. Save the current catalog. For additional detail, see Saving a SuperBlock, p.84.

NOTE: The current tutorial block diagrams can be loaded into the CatalogBrowser
" by executing the following command from the Xmath Commands window.

load "$SYSBLD\examples\gs_tutorial\vibel.cat";

The vibel catalog contains a solution of the basic spring-mass damper
constructed in the first four sections of the SystemBuild tutorial.

To simulate the block diagram representation of the damped spring:

1. Inthe Xmath command area, verify or reenter the original values for t, u, m,
pO0, and vo:
t=1[0:0.01:5];
u =-9.8 * ones(t);
m=1;
v0 =0;
p0=0;
2. Define values for the stiffness k and damping constant c:

k =100;
c=1;

3. Execute the simulation:
y =sim("vibe", t, u, {graph});

When the simulation completes, velocity and position are plotted in an Xmath
Graphics window (see Figure 4-32).

93

MATRIXy 7.0

Getting Started Guide

Exercise the model by simulating other values for the parameters and the
input force. Try u = zeros(t); p0 =1;.

Figure 4-32 Damped Spring Simulation Plot

o0s

s

-1

0=

g

a2

[in

\/\/\/’
\/

IARVANA WA 2NN
\/

Tme

Exercise

While using the Palette Browser, you have probably noticed many more pre-
defined block types. To read brief descriptions of SystemBuild block types:

1.

In the Xmath command area, enter:
help blocks

When the Blocks topic appears, scroll down to the tables that list the block
types by palette, and read the descriptions there. For more detailed
information about block types, follow the table links.

4.4.5 Using a BetterStateChart Block to Model Events

In this section, you enhance the vibe SuperBlock model to simulate events.

94

4
SystemBuild

NOTE: This tutorial is designed to lead you through the construction of basic and
" intermediate SystemBuild block diagrams and BetterState charts. If you wish to
skip the first four sections of the tutorial, the current tutorial catalog can be loaded
into the CatalogBrowser by executing the following command from the Xmath
Commands window.

load "$SYSBLD\examples\gs_tutorial\vibel.cat";

Suppose that the space of the damped spring model is divided into two regions
with different damping constants. Also, suppose that a barrier is added from
which the mass rebounds. The resulting model includes events that produce
discontinuous behaviors. To effectively simulate events, you need to detect them,
and then modify affected values in the model. Modeling events often presents an
additional challenge: algebraic loops must be avoided, or properly managed.

An algebraic loop is created when a signal path in a block diagram forms a loop,
without passing through the input of an Integrator block. Look again at

Figure 4-30. Note that each of the two signal loops pass through the force input to
the Newton SuperBlock, which is subsequently routed through the input of both
integrators. The standard processing algorithms of continuous SuperBlocks can
not handle an algebraic loop unless its signal is controlled by one of several
special SystemBuild features. In this tutorial, the use of a BetterState block creates
an asynchronous subsystem that controls signal flow through algebraic loops.

To simplify implementation, the physical system you model in this section:

= sets a damping region boundary such that the region above the boundary is
damped according to a damping constant; the region below the boundary is
undamped (damping constant = 0).

= sets a barrier below the damping region boundary (in the undamped region).

= assumes a rebound restitution factor = 1.

95

MATRIXy 7.0

Getting Started Guide

To implement this enhancement to the damped spring model:

Resettable Integrator

Modify the Newton SuperBlock so that its integrators are resettable, give it
more inputs for the signals needed to do the resets, and add acceleration to
the outputs, so that it can be displayed with simulation results.

Modify the damping loop so that the damping force can be switched on and
off; add blocks that set the damping region boundary and barrier positions.

Create a new SuperBlock for controlling events. It detects boundary crossings
and barrier impacts, and uses ZeroCrossing blocks to generate event signal
inputs to a BetterStateChart block.

Develop a BetterState chart that maintains the damping state, processes
boundary crossings and barrier impact events, and has three outputs:

. asignal to switch the damping force.
. avalue for resetting velocity.
. anintegrator reset trigger.

Make final connections in the block diagram.

In this section you learn how to modify the block properties of an Integrator block
to make it resettable. A resettable integrator has two additional input signals: one
containing the reset value, and one to trigger resets. These additional inputs to
integrator blocks do not break algebraic loops, as does the input signal to be
integrated.

To modify the Newton SuperBlock:

1.

96

Access the block diagram of the Newton SuperBlock.

a. Make the Editor the active window and update the vibe SuperBlock by
selecting File - Update.

b. Double click on the Newton SuperBlock block. The Editor now displays
the block diagram of the Newton SuperBlock.

4
SystemBuild

2. Edit properties of the accToVel Integrator block.

a. Inthe Parameter table, locate the drop-down combo box in the Value
column and the Resettable row. Change its value to Double Edge.

A double edge reset is triggered by a signal that changes from <=0 to >0, or
from >0 to <=0. The trigger in this model resets the integrators by
switching between 0 and 1.

b. Click the Input tab and name the inputs: acc, velReset, and trigger.
3. Change the velToPos Integrator block reset to Double Edge.

Name its inputs: vel, posReset, and trigger.
4. [Edit the Newton SuperBlock Properties dialog:

a. Open the dialog by selecting File - SuperBlock Properties....

b. Change the number of inputs to 5 and outputs to 3.

c. Click OK to accept current values and close the dialog.

5. Complete connections, and make minor position adjustments so that your
Newton block diagram resembles Figure 4-33.

Figure 4-33 Newton with Resettable Integrators

Contimious SuperBlock Inputs Outputs
Newton 5 3

Feoqma accToVel wvelToPos
[12]

2 T = T 3
force acc 1 Fel 1 pos
1y v 3y [E—nL [—r1

3] 3
[uass L5 Ro= swo (50— B _spo

H

97

Signal Switch

MATRIXy 7.0
Getting Started Guide

In this section, you implement a simple signal switch that enables a model to turn
a signal on and off.

To modify the damping loop, and add blocks for damping boundary and barrier
position:

1. In the SuperBlock editor, return to the vibe block diagram by selecting
View - Parent - vibe, followed by File - Update.

2. Delete the damping Gain block:

a.

b.

Select the block by clicking it with MB1.
Select Edit - Delete.

3. Add blocks to vibe:

a.

b.

C.

d.

Add an ElementProduct block from the Algebraic palette, and a Constant
block from the Matrix Equations palette.

Flip and duplicate the ElementProduct block.
Flip, reduce twice, and make 2 duplicates of the Constant block.

Position the vibe blocks as shown in Figure 4-34.

4. Edit block properties:

a.

Name the left ElementProduct block dampingF, name its inputs
dampingC and velocity, label its output damping, and enable its Show
Outputs Labels check box.

Name the right ElementProduct block dampingA, name its inputs
dampingC and switch, and label its output damping.

Name the upper right Constant block dampingC, change its
ConstantName to ¢, give it a % variable ¢, and label its output damping.

Name the lower left Constant block wallPos, change its ConstantName to
wp give it a % variable wp, and label its output wallPos.

Name the upper right Constant block dampPos, change its
ConstantName to dp give it a % variable dp, and label its output
dampPos.

5. Make block connections for the damping loop as shown in Figure 4-34. More
connections are added later.

98

4

SystemBuild
Figure 4-34 vibe Modifications
Continaous SuperBlock Inputs Outputs
vibe 1 2
danpingF danpingd dawmpingC
1z 93 14
. =
damping [~p] o
forces \1—‘:‘"4\ =
Newtaon
B [13]
Fel
b FEREEE (L
T = S
- Continuous
stiffness wallPos dampPos
2 4 ag
) 1w |
atiffneas 1 5 S -‘%?p

Next you create a Superblock to control events. Instead of encapsulating blocks

already in place, you add a new SuperBlock block to vibe, and then construct its
block diagram.

99

Event Controller

MATRIXy 7.0
Getting Started Guide

In this section, you'll create an event controller for vibe. An event controller
recognizes that an event has happened, and causes actions to occur as a result.
Actions can be based on state information stored by the controller, and can
include changes in output signal values, and internal state transitions.

To create a new SuperBlock for controlling events:

1. Add a SuperBlock block to vibe:

a.

Drag and drop a SuperBlock block from the SuperBlocks palette to the
open area on the right side of the vibe block diagram. Make it the same
size as the Newton SuperBlock.

Name the block eventual Give it 4 inputs and 3 outputs and change its
Icon Type to User.

2. Navigate to the eventual block diagram and add blocks:

a.

d.

Double click the new SuperBlock block. The SuperBlock editor now
displays an empty block diagram.

Drag and drop a Summer block from the Algebraic palette, a ZeroCrossing
block from the User Programmed palette, and a BetterStateChart block
from the BetterState palette.

Duplicate the Summer and ZeroCrossing blocks, and enlarge the
BetterStateChart block twice.

Position the blocks as shown in Figure 4-35.

3. Edit block properties:

a.

d.

Name the upper Summer block dampTest, name its inputs pos and
dampPos, label its output dampTest, and change its Icon Type to Simple.

Name the lower Summer block wallTest, name its inputs pos and wallPos,
label its output wallTest, and change its Icon Type to Simple.

Name the ZeroCrossing blocks dampCross and wallCross, and use those
names to label their outputs.

Name the BetterStateChart block vibeChart.

You make connections in the eventual SuperBlock after developing the BetterState

chart.

100

4

SystemBuild
Figure 4-35 eventual SuperBlock
Continuous JuperBlock Inputs Outputs
eventual 4 3
danpTest danpCross
[L3]
Zerao
Crossing
vibeChart
- i
wallTest wallCrogs i
1
(2] =]
Zero | | Betterdtate
Crossing (2 — Chart —{ 3>

BetterStateChart Block

A BetterStateChart block performs a central role in an event controller. It
maintains current state information, and allows specification of the actions taken
as events are processed. For more information about the BetterStateChart block,
see the BetterState User’s Guide.

To develop the vibeChart BetterState chart:

Add transitions to vibeChart.

1. Display the BetterState Statechart window for vibeChart.
2. Verify settings in the Chart Properties dialog.

3. Specify events and variables in the Data Dictionary dialog.
4. Add states to vibeChart.

5. Edit state properties.

6.

7.

Edit transition properties.

101

MATRIXy 7.0
Getting Started Guide

BetterState Statechart

To display the BetterState Statechart window for vibeChart:

Double click on the BetterStateChart block.The BetterState process is
activated and the BetterState Statechart window is displayed. The chart area is
empty. See Figure 4-36.

NOTE: There may be a delay as the BetterState process is loaded.

NOTE: State chart appearance can be controlled through settings available
through Visual Settings dialogs. The settings for the chart displayed in this tutorial
are selected for visual clarity in b/w display. The chart you construct will differ in
color and text styles.

Figure 4-36 The BetterState Statechart Window

:ﬂ yvibeChart [Statechart] | [O] x|
File Edit Create Wiew Help

#[¥] a| v|o|¢|6|m

3| a:n|a-5|-|-| Q|Q|Q|Q|Q|Q|Q|E|

>~

Chart area

VRN

4 | of

Fage Ko 1 Loom%: 100 Layer: hase layer

102

4

SystemBuild

Figure 4-37 BetterState Chart Properties dialog
:ﬂ[:hart Properties E3
EFaneral :
=-Code Generation Code Generation
== i o
- Actions Code Generator [BlockScript for SysternBuild | = |
-Assertions
e Pre-conditions .
i —Seth
wPosteoonditions i
""" Layers Contral implementation
E-Output
. L-Bystern " Pracedural
=-Debug B & Event-driven
~~Race Conditions
~Watchdaog Priorities
=-4isual Debug » o
=-User Code ¢ Based on transition priorities
rInclude Files + Based on state hierarchy
s lnheritance
" MNone
Conditichals
= - Then
" Ewiich case
Return valug
& Terminal state reached
" Number of transitions fired
Ol | Cancel |
Chart Properties

To verify settings in the Chart Properties dialog;:

1. From the Statechart window, select File - Chart Properties....

The Chart Properties dialog is displayed. (Figure 4-37 shows the Chart
Properties dialog as it appears during Step 2 below).

103

MATRIXy 7.0

Getting Started Guide

2.

Data Dictionary

Click the Code Generation/Settings node and verify:
a. The Code Generator combo box field contains BlockScript for SystemBuild.

b. In the Control implementation group, the Event-driven radio button is
enabled.

To specify events and variables in the Data Dictionary dialog:

1.

104

From the Statechart window, select File - Data Dictionary....

The Data Dictionary dialog is displayed. (Figure 4-38 shows the Data Dictionary
dialog as it appears during Step 5 below).

To enter event names in the Data Dictionary dialog;:
Select the Arguments tab. In the Arguments pane, select the Events tab.

b. In the Define event inputs and outputs editable combo box field, type
dampEvent and press the Enter key.

c. Double click on the entry dampEvent to select it, type wallEvent, and
press the Enter key.

d. Click the Define event inputs and outputs combo box arrow to verify that the
list now contains both dampEvent and wallEvent.

To enter input variable names in the Data Dictionary dialog;:
In the Arguments pane, select the Chart Arguments tab.

b. In the Inputs table, double click in the Name field of row 1. Type vel and
press the Enter key.

c. Enter the input variable names pos, dampPos, and wallPos in the Name
fields of rows 2 through 4.

With the Chart Arguments tab still selected, enter the output variable names
dampSwitch, velReset, and trigger in the Outputs table Name fields of rows 1
through 3.

Verify all entries in the Data Dictionary dialog.

In the Arguments pane, select the SystemBuild Interface tab. The information
displayed should agree with that shown in Figure 4-38.

Select File - Close to close the dialog.

4
SystemBuild

Figure 4-38 Data Dictionary dialog
:ﬂ yvibeChart [Data Dictionary] M= E
File Edit Wiew Help
=X =] & B -
Locals/Globals Arguments | AII'
Chanﬁrgumental Events SystermBuild Interface | Initialization Argquments
Assign SystemBuild pin numbers
Inputs
Fin Mumber Mlarme Data Type Caomments
1 dampEvent Event
2 wiallEvent Event
3 el Float
4 pos Float
a dampFPos Float
G wallPos Float
Qutputs
Fin Mumber Mlarme Data Type Caomments
1 dampSwitch Float
2 velResat Float
3 tricoer Float

105

MATRIXy 7.0
Getting Started Guide

States

To add states to vibeChart:

1. On the Statechart window, select Create - State. Click in the chart area. Drag
and release to create a rectangle. Create two more rectangles in the chart area.

Figure 4-39 vibeChart

Initialize
ah-entry velReset=0;
trigger=0;
ns==dampPos] ns=dampPosz]

Damped unDamped

on-entng dampSwitch=1; dampEvent-h on-entny’ dampSwitch=0,
allEwvent

el]
dampEvent IvelReset=—vel,

trigger=1-trigger,

2. Resize and position your state rectangles to resemble those in Figure 4-39:

a
b.

a o

106

Select Create - Select Mode.
Select a rectangle by clicking in it.
Resize by dragging the resize handles of a selected rectangle.

Position by clicking inside a selected rectangle and dragging.

4
SystemBuild

Figure 4-40 State Properties dialog
State Properties

General \ Actinns] Asser‘[ionsl Cnmments] Laver]

State name [initialize

Animation time choice
[v Default [Terminal

[History [Mon-Resting [Break

(]34 Cancel

State Properties

To edit state properties:

1. On the Statechart window, select Create - Select Mode and then double click
inside the top state rectangle. The State Properties dialog for that state is
displayed. (Figure 4-40 shows the State Properties dialog as it appears during
Step a below).

a. Name the state Initialize, and enable the Default and Non-Resting check
boxes.

The default state is entered at the start of a simulation. A simulation does
not remain in a non-resting state. vibeChart’s Initialize state is entered
only during initialization of simulations. At that time, it assigns values to
two of the output variables, and then determines the correct state to
assume based on initial values of its input variables.

107

MATRIXy 7.0

Getting Started Guide

Click the Actions tab. Verify that the User Code radio button is selected for
Edit On-Entry Action. Click the Edit On-Entry Action button.

The User Code dialog for the On-Entry Action of the Initialize state is
displayed. Enter initializations for the variables velReset and trigger as
shown in Figure 4-41.

Click the OK button to verify that the correct code is entered, and exit the
User Code dialog. Click the OK button of the State Properties dialog to
return to the Statechart window.

Figure 4-41 User Code dialog

i Uzer Code: On-Entry Action E3
welReset=0; 1=
Lrigger=0;

5

]34 Cancel

108

Double click on the lower left state to display its State Properties dialog.

C.

Name the state Damped. (Do not enable any of the check boxes.)

Navigate to the User Code dialog for the On-Entry Action of the Damped
state. Enter the code line:
dampSwitch=1;

Return to the Statechart window.

Name the remaining state unDamped. Give it an On-Entry Action:
dampSwitch=0;

Transitions

Figure 4-42

4
SystemBuild

To add transitions to vibeChart:

1.

On the Statechart window, select Create - Transition. Click inside the Initialize
state, drag into the Damped state, and release. A transition arrow now
connects the Initialize rectangle to the Damped rectangle.

Add additional transitions:
Initialize — unDamped
Damped - unDamped
unDamped - Damped.

Create a transition from unDamped back to itself:

a. Click inside the unDamped state.

b. Drag into empty area to the right of unDamped.

c. Drag back into the unDamped state and release.

Position your transition arrows to resemble those in Figure 4-42:
a. Select Create - Select Mode.

b. Select a transition arrow by clicking on it.

c. Position by dragging the handles of a selected transition arrow.

Transition Properties dialog

:ﬂ Transition Properties

Event CDHUiTiDnlActinnl Cnmmentsl

Condition (Boolean expression)

pose=danpFos

Friority

fo

0]54 Cancel

109

MATRIXy 7.0
Getting Started Guide

Transition Properties

To edit transition properties:

1. On the Statechart window, select Create - Select Mode and then double click on
the transition arrow from Initialize to Damped. The Transition Properties dialog
for that transition is displayed. (Figure 4-42 shows the Transition Properties
dialog as it appears during Step a below).

a. Verify that the Condition tab is selected and enter the transition condition
in the Condition (Boolean expression) text entry box as shown in Figure 4-42.

b. Click the OK button to accept the edited properties and exit the Transition
Properties dialog.

2. Give the Initialize to Damped transition the Condition (Boolean expression):
pos<dampPos

3. Edit the Damped to unDamped transition properties:

a. Verify that the Event tab is selected and set the Event name combo box field
to dampEvent.

b. Click OK to exit the Transition Properties dialog.
4. Set the unDamped to Damped transition Event name to dampEvent.
5. Edit the unDamped to unDamped transition properties:
Set the Event name combo box field to wallEvent.

b. Select the Action tab. Verify that the User Code radio button is selected and
click the Edit On-Entry Action button.

In the User Code dialog, enter the code lines:
velReset=-vel;
trigger=1-trigger;

Click OK to exit the User Code dialog.

c. Click OK to exit the Transition Properties dialog.

NOTE: Recall that a simplifying assumption was made concerning the position
* of the barrier wall: the wall is located within the undamped region. Therefore, it is
not necessary for the damped state to handle a wall event.

If an event triggers a state chart process, and the transitions of the current state do
not reference that event, no state transition occurs. However, if the current state
contains a During Action, the code for that action is executed.

110

4
SystemBuild

Return to SystemBuild for Final Connections

Your state chart should now look like the one in Figure 4-39. Recall that visual
properties have been modified for tutorial Statechart figures.

To make final connections in the eventual and vibe block diagrams:

1. Select File - Close Window to return to the eventual block diagram in the
SystemBuild SuperBlock editor.

2. In the SuperBlock editor, select File - Update.

3. Make connections in the eventual block diagram as shown in Figure 4-43.

Figure 4-43 The eventual Block Diagram

Continuous SuperBlock Inputs Outputs

eventual 4 3
danpTest danpCross
12 [13]
Zero |
Crozssing
wibheChart
B2l li
—{1 »
wallTest wallCross ks
[] L
Zera BetterState
Crosaing A — Chart 3

4. Return to the vibe block diagram by selecting View - Parent - vibe, followed by
File » Update.

a. Change the number of vibe external outputs to 3.
b. Connect Newton output 3 to vibe output 3.
c. Make additional vibe connections as shown in Figure 4-44.

Before you test the event enhanced model, take a minute to save your work.

111

MATRIXy 7.0
Getting Started Guide

In the first simulation, you test barrier events only. Gravity is used to drop the
mass from an initial position beneath the damping boundary, but above the
barrier. Spring stiffness and damping constant are set to zero.

Figure 4-44 The vibe Block Diagram.

Continuous SuperBlock Inputs Outputs

vihe 1 3
danpingF dampingd danpingC
1z 99 14
. C
danpin M I
yapRylin] °>K o o% -1l
t I
o Newton Taldel eventnal
- {1 L [23]
M=o | rrymma IS
nass azs [2 {2 e ;@ﬁ
I B adc S B
| 3—~ Continuous 3 ' :
P Continmous
stiffness wallPos danpPos
2 4 a5
stiffness _ L{ wp L ol:lé:
g Zup zdp

NOTE: The current tutorial block diagrams and state chart can be loaded into the
" CatalogBrowser by executing the following command from the Xmath Commands
window.

load "$SYSBLD\examples\gs_tutorial\vibe2.cat";

vibe2 contains a solution of the intermediate spring-mass damper model with
event modeling using the BetterState block.

112

4
SystemBuild

To simulate barrier events with vibe:

1. In the Xmath command area, enter the following values:

t=1[0:0.001:5];

u =-9.8 * ones(t);
m=1;

v0=0;

po=7,

c=0;

k=0;

dp=10;

wp=0;

2. Execute the simulation:
y = sim("vibe" t,u,{graph});

The simulation proceeds as before, but there is a delay as the BetterStateChart
block code is compiled and linked. Also, the simulation output log shows that
two zero-crossings occurred.

The plot results in Figure 4-45 verify that these zero-crossings correspond to
rebounds from the barrier.

Figure 4-45 vibe Barrier Events
15
1: 1.5._‘_‘1_& ﬁ""‘*mh.h
T g -‘-H“—""‘--_ -‘-‘H—k_"‘"-._
= . "--__‘_‘_‘_‘H_ --.-‘-H"""'-h.._‘_ Bt
-1o] ‘H‘H""'-h-..
-14
; e . e —]
: = = et e
: = e Y
g3 < e <
: 4 S,
; S, S,
i]
Boas
o 1 2 3 4 i
Time

113

Final Exercise

MATRIXy 7.0
Getting Started Guide

In the final simulation, you include damping boundary events. The external input
force is set to zero, but the spring produces a force when the mass is displaced
from the spring equilibrium point. The damping boundary is set between the
initial position and the equilibrium point (zero). The barrier is set on the opposite
side of the equilibrium point.

To simulate damping boundary and barrier events with vibe:

1. In the Xmath command area, enter the following values:

t=[0:0.001:5];
u = zeros(t);
m=1;

v0=0;

po=7,

c=5;

k=20;

dp=2;

wp=-2;

2. Execute the simulation:
y = sim("vibe" t,u,{graph});

The simulation log shows many more zero-crossings. The plot results in

Figure 4-46 verify that some are form barrier events, and some are from damping
boundary events. Note that the velocity curve is discontinuous at barrier events,
and the acceleration curve is discontinuous at damping boundary events.

Recall that several simplifying assumptions were made in modeling damping
region and barrier events. Test your understanding of SystemBuild and
BetterState, as well as your design skills, by adding the following enhancements
to the current model:

= Damping constants can be specified for both damping regions.
= Barriers can be placed both above and below the initial position of the mass.

= Restitution factors can be specified for both barriers.

NOTE: A solution to the final exercise can be loaded into the CatalogBrowser by

" executing the following command from the Xmath Commands window.

load "$SYSBLD\examples\gs_tutorial\vibe3.cat";

114

4

SystemBuild
Figure 4-46 vibe Barrier and Damping Boundary Events
o
15
" AR T =
. s N [Ay
: < < | <
AN I P P o
-15 \u e
-m
B
"\
N
N Ned N N i
) N4 N 4 N
il
N AN N SN
pap ol N N AT S S
-1m /
- 2 3 ‘ 5
Time

115

MATRIXy 7.0
Getting Started Guide

116

AutoCode

AutoCode software lets you generate ANSI C or Ada code automatically from
SystemBuild models.

You can generate code from the Catalog Browser in SystemBuild or use the
autocode Xmath command. The generated code represents a complete
implementation of the model and can be targeted to run on computers or on an
actual controller. The default target is a stand-alone simulation that you can
execute on your computer; you can load the results of the simulation back into
Xmath for analysis.

5.1 Generating Non-Customized Code

To generate code for the sample Discrete Cruise System model, follow the steps
below. on your terminal.

To generate code for the Discrete Cruise System SystemBuild model:

1. If Xmath is not currently running, start Xmath as described in 3.2.3 Starting
Xmath, p.34.

2. Verify that you have write permission for the current directory, and that it is
where you want to save your code. If not, enter the command below from the
Xmath command window, substituting your directory name:

set directory =" write_enabled_directory"

117

Figure 5-1

MATRIXy 7.0
Getting Started Guide

3. From the Xmath command line, type the following command to load the
model:

load "$SYSBLD\demo\cruise_demo\cruise_d.cat";

NOTE: Environment variables are only recognized on the Xmath command line.
For other loading methods, you must know the full pathname of the SystemBuild

directory.

4. From the SystemBuild Catalog Browser, select the Discrete Cruise System
SuperBlock.

NOTE: You must generate code from a top level SuperBlock.

5. From the Catalog Browser, select Tools - AutoCode to bring up the Generate
Real-Time Code dialog (see Figure 5-1).

6. Enter a name in the File name field, or accept the default,
Discrete_Cruise_System.

Generate Real-Time Code Dialog

Generate Real-Time Code H |

Laak jr: |E test j EFl
[C]:vibe.c:

ﬂ vibe.mak

Iﬁ wibe.rtf

File name: IDiscrete_Eruise_S_l,lslem

Files of type: [1 Fies (7] =]

Caode Generation Options

Code Style ISubs_l,lstems j Block Parameters IZ\-"ars fram #math j
Language: IE j v Tupecheck

]9 | Advanced | Fezet | LCancel | Help |

118

5
AutoCode

7. Click OK to start the code generation process.

8. Activate the Xmath Commands window to monitor the progress of the code
generation.

9. Once the code generation is complete, look for a statement similar to the
following in the Xmath log area:

Output generated in your_directory\Discrete_Cruise_System.c.

Code generation complete.

10. (Optional) Display the output file in the Xmath Output window by entering a
command similar to the following in the Xmath Commands window:

oscmd ("type your_directory\Discrete_Cruise_System.c")

5.2 Generating Customized Code

To customize your AutoCode output, click Advanced on the Generate Real-Time
Code dialog; this brings up the Advanced dialog (see Figure 5-2).

You can use the Advanced dialog from the AutoCode Code Generation dialog or use
keywords with the autocode Xmath command to customize the generated code as
follows:

= Specifying a template file on the Templates tab allows you to control the
formatting of the output of AutoCode to meet a variety of software needs;
you can modify the overall architecture of generated code, customize the
scheduler, modify data structures and external I/O calls, add user code, and
so forth. Using the Template Programming Language (TPL), you can tailor
any part of the code except the hierarchy logic and the elementary blocks.
Numerous templates are available, including one to customize the generated
code for the pSOSystem real-time operating system. For more information on
templates, see the Template Programming Language User’s Guide.

= Formatting options (Formatting tab) let you set maximumes, such as the
number of significant digits, the length of variable names, and columns per
row. From here, you can also specify indentation between levels, as well as set
a number of other parameters.

119

Figure 5-2

MATRIXy 7.0
Getting Started Guide

= The IALG (Integration Algorithms) Options tab lets you select an integration
algorithm such as Euler or Runge Kutta.

= The Multi-Processor tab lets you specify a processor, startup, background,
interrupt, skew, priority, or map file.

= The Optimization tab lets you make general, vectorization, and VAR block
settings that affect code size and efficiency (see the Autocode Reference for
details).

= The Miscellaneous tab lets you select an options file, the type of scheduler,
output scope control, and various other settings.

= The RTOS (real-time operating system) Options tab lets you specify a
configuration file and set additional options.

Once you have customized your settings, you click OK in the Advanced dialog;
then you generate code by clicking OK in the Generate Real-Time Code dialog.

For information about compiling, executing, and using the generated code, see
the AutoCode User’s Guide. For information about autocode keywords, see the
topic AutoCode in the MATRIXy online Help.

Advanced Dialog

Advanced
Farmatting | Mizcellaneous | Multi-Processor |
Termplate: Optirnizatior | 141G Option: I RTOS Optionz
—Gen —WAR Blocks
r INone j ™ Local V&R

I~ Merge IMIT Sections

[T Constant Propagation Loop Threshaold |2 j I™ Global VeRs

™ Omit Unused Blk Outpt

=i Use WAR Block Callout
™ Feuse Temporany Vars Anay Thieshald |- = ™ Use ok Satauts

I.t’-‘«utolzode H ame j

[No LY Stuctures ™ MolMFO Stucture [NoEmor Check

" Procedure SuperBlocks

ok LCancel | Help |

120

Documentlt

The Documentlt software generates block-level documentation for SystemBuild
models. The Documentlt software extracts the parameters of the SuperBlocks and
elementary blocks in your model and any comments you have entered for each
block; it then formats the documentation according to guidelines you define. You
can generate documentation from the Xmath command area or from the
SystemBuild Catalog Browser. You can invoke controls as arguments from the
command area or make choices in a user dialog.

This chapter provides an introduction to using Documentlt. For a complete
description, see the Documentlt User’s Guide.

6.1 Generating Non-Customized Documentation

To generate documentation for the sample Discrete Cruise System model, follow
the steps below. We assume that you have Xmath running on your terminal.

1. Make sure you are in a directory where you have write permission for saving
your code. If not, enter the command below from the Xmath command
window, substituting your directory name:

set directory =" your_directory"

121

Figure 6-1

MATRIXy 7.0
Getting Started Guide

2. From the Xmath command line, type the following command to load the
model:

load "$SYSBLD\demo\cruise_demo\cruise_d.cat";

NOTE: Environment variables are recognized only in the Xmath command area.
For loading with other methods, you must know the full pathname of the
SystemBuild directory. See 3.2.1 Directories Defined by Environment Variables, p.33
for additional information.)

3. From the SystemBuild Catalog Browser, select the Discrete Cruise System
SuperBlock.

NOTE: You must generate documentation from a top level SuperBlock.

4. Select Tools — Documentlt to bring up the Generate Documentation dialog (see
Figure 6-1).

Generate Documentation Dialog

Generate Documentation 2]

Laook i I =3 working

A cdown. maf

@ cdown, mef_old

@ cdown, xf

@ Discrete_Cruise_System.c
Digcrete_Cruize_System.rtf

File: name: IDiscrete_Cluise_System

Files of type: [l Files () =l

Document!t Optiot

Elack Parameters |°/=\"'ar3 from Xmath ‘l ¥ Typecheck

Template File I Browse

i

Config File I Browse

Ok | LCancel | Help |

5. Choose a directory, and enter a name in the File name field or accept the
default, Discrete_Cruise_System.

122

6
Documentit

NOTE: You do notneed to supply the extension. Documentlt supplies the default,
.doc, for you.

6. Click OK to start the document generation process.

7. Select the Xmath Commands window to monitor the progress of the
documentation generation.

8. Once the document generation is complete, look for a statement similar to the
following in the Xmath Log window:

Documentation generation complete.
Document generated and saved in file: Discrete_Cruise_System.doc.

NOTE: The .doc file is in ASCII format. The current defaults also produce an.rtf
file, which contains Microsoft Word markup commands.

9. (Optional) Display the output file in the Xmath Output window by entering a
command similar to the following in the Xmath Commands window:

oscmd (“type your_directory\Discrete_Cruise_System.doc")

Figure 6-2 provides a samping of DocumentIt output from the
Discrete_Cruise_System.doc document.

123

MATRIXy 7.0
Getting Started Guide

Figure 6-2 Sample of Documentlt Output

> ¥math Commands H= E

File Edit "“/iew Option: ‘Window Help

Humber of Dataltorez in thiz model =1 ;I

Description :

No. of Registers =1
Ho. of Inputs = 1
No. of Outputs = 1

Hane DataType oM Limit/Range Aoocuracy —
set speed DOBELE 0.0-0.0 0.0

R AR T AR A AR T AT A A R A R T AT AT A R AR T AT AT RARTATATFRARTN

Muwber of SuperBlocks inputs this wmodel = 6
SUPERELOCE[OQ] = Discrete Cruise Systen
SUPERELOCE[Ll] = Cruise Control Svsten
SUPERELOCK[Z2] = Set Speed

SUPERELOCE[3] = Controller Logic
SUPERBLOCK[4] = mux3

SUPERELOCE[5] = continuous autonchile

Number of Unigque SuperBlocks inputs this wodel = 6
SUPERELOCK[O] =
SUPERELOCE[1] =
SUPERELOCK[2] =
SUPERELOCK[3] =
SUPERELOCE[4] =
SUPERBLOCK[S] =

[R R

SE_FREQ_R
SB_SAMPLE
$B_SKEW_R.
SB_ACTV_SIG_!
SB_OUT_POST

oo
[=TT

G1on
e
|

i

e
=]
5
LI
]
(L=
L]
[z]
]
]
ot
1]

SE_HAS _IN_B 1
SE_HAS IN DATA E =1
5B_I5 DECER.E = 1
SE_IS_TRIGE = 0
External Data Elements

Discrete Cruise System External Inputs

4] |

4]

Ready main

e

124

6
Documentit

6.2 Generating Customized Documentation

You can customize documentation generated with DocumentlIt by using
templates. Template files are ASCII files containing text, interspersed with
template command parameters that specify DocumentIt output. The TPL
programming language lets you modify the templates to control the output of
Documentlt to meet a variety of needs. Various templates are available.

In addition to template command parameters, you can also place publishing
software markup commands (for example, FrameMaker, Microsoft Word, or
WordPerfect markup commands) in template files, which DocumentIt writes
directly to the ASCII output file. The markup commands automatically format the
document when it is imported into the corresponding publishing software. See
the Template Programming Language User’s Guide.

Unlike AutoCode, Documentlt does not have a dialog box for advanced features.

125

MATRIXy 7.0
Getting Started Guide

126

RealSim

The RealSim controller lets you do real-time simulations of feedback control
system models designed in SystemBuild. In this way, you can see how a
prototype performs in the real world before actually building the prototype.

The RealSim environment lets you run SystemBuild models in real time:
connecting to real external hardware for real-time simulation, rapid prototyping,
and hardware-in-the-loop modeling. You can build run-time graphical user
interfaces that let you monitor values and change setpoints in the application
running on a real-time computer in the same manner that you perform interactive
simulations in SystemBuild. In addition to the software tools, real-time computers
with analog and digital I/O are available to complete the RealSim environment.

7.1 Feedback Control Systems

Control involves interaction between two objects. For example, when you are
driving, you watch the speedometer. If you are going too fast, you reduce your
speed by letting up on the accelerator pedal. If you are going too slowly, you press
down on the accelerator to increase your speed. This type of interaction is actually
feedback control; that is, a sensor measures the controlled variable (the car speed),
and the information obtained is fed back to influence the controlled variable.

127

MATRIXy 7.0
Getting Started Guide

7.1.1 Conventional Design

Conventional design of such a control system takes place in stages with several
separate tools required for control design, software engineering, data acquisition,
and testing.

Design of a control system typically involves engineers:
1. Creating an accurate plant (the variable that is controlled) model.

2. Simulating the model to see how it compares with reality. (Engineers collect
data measuring the behavior of interest and then change the model, if
necessary.)

3. Building a control system for the plant and then testing the entire control
system, including the plant.

4. Implementing and testing the model in hardware, making modifications if
necessary.

5. Testing results again in a functional prototype.
The conventional approach has three major flaws:

« Itis expensive; you have to modify the prototype or the controller at each
stage.

« Itis a time-consuming process from conception to finished prototype.

= When you obtain a prototype, you do not know if you have an optimum
design.

7.1.2 Rapid Prototyping

Rapid prototyping uses one tool and three steps to accomplish the following:

= Integrate tools for each stage of system development into a single
environment.

= Advance design progress easily through development stages.
= Create a working prototype early in the design process.

Figure 7-1 compares conventional prototyping to rapid prototyping.

128

7

RealSim
Figure 7-1 Rapid Prototyping Concept
Traditional prototyping: Many sequential steps, many tools
| Design [Implementation ; Testing [
[\ ‘ [
[[‘ [
| | v ‘ |
[[[
+ Software ‘
[v g v | v : .
[: Development | Hardware Functional
[; in-the-
! Design o Integration N ttgsetilr?;p ‘4 Prototype
[[
| | Controller A : |
[\ Development | ‘
| — | ‘
| I | I
Prototyping with RealSim: Three steps, one tool
| |
[
PR |
! Desi Simulati _Ha:dv;/are ! Functional
esign imulation »| in-the-loo

: 9 > d testing P Jr Prototype
[
| |
| |

The MATRIXx Product Family software implements rapid prototyping. The plant
and controller are simulated together, considerably reducing time and
development cost to produce a functional prototype. 7.1.4 Building and Testing a
Feedback Control System Model, p.130 describes how to use the MATRIX software
to build and test a model of a feedback control system.

7.1.3 Other Simulations with a RealSim Real-Time Controller

You can use a real-time controller to simulate a device (referred to as plant
emulation). For example, computers are used in weather forecasting. Various
sensors measure atmospheric conditions, the outputs of these sensors are
analyzed by the computer, and the computer outputs a forecast. Suppose you
want to develop a new system of sensors for improved forecasting and test it. You
could connect the new sensors and check them out on a weather-forecasting
computer. A faster, easier, and cheaper way is to find out the input and output
requirements of the forecasting computer and simulate the climatic sensor output
with a RealSim controller (see Figure 7-2). When your design is functional, you
can then test the new sensor hardware attached to the real forecasting computer.

129

MATRIXy 7.0
Getting Started Guide

Figure 7-2 RealSim in a Weather Prediction Testbed

F-- - - - — — — — — — — — -
\ \

Earth or ‘
\ RealSim > Sensors > \(/:Veathetr
‘ Controller | omputer
| |
\ \

Emulated Plant

Suppose you want to improve one of the chips in a car’s electrical system. You can
use a RealSim controller to simulate the functions of that chip. To make changes to
the chip, redesign the chip-emulation model by rebuilding it in SystemBuild, and
then regenerate the real-time code with AutoCode. You can do this as many times
as necessary until the simulated chip performs as desired.

Another possibility is the simulation of a microprocessor-based control system
(rapid prototyping). If you have a system that is controlled by a microprocessor,
you can simulate the microprocessor with the RealSim controller. As before, you
test your design, make changes in SystemBuild, and come up with the optimal
design with the RealSim controller performing the functions of the production
microprocessor and the control code. When the design is optimized, you can
replace the RealSim controller with the actual microprocessor. You can transfer
the code generated by AutoCode from the RealSim controller directly to the
microprocessor if the appropriate board-specific standalone utilities have been
written. You do not have to write additional code in this case.

7.1.4 Building and Testing a Feedback Control System Model
Typical design of a control system model using MATRIXy software proceeds as
described in 4. SystemBuild.
To build and test a feedback control system model:
1. Simulate the model on the host display to see how it compares with reality.

As your model runs under the simulator, you can monitor it on the host
display, changing signal values and viewing the internal signal values.

You can also collect data using the data acquisition features of the RealSim
controller and compare it with data from the actual plant. If necessary, you
can change the model.

2. Linearize the model using SystemBuild.

130

7
RealSim

3. Design a controller using Xmath.
4. Incorporate the controller design into the model via SystemBuild.

5. Simulate the whole design, plant plus controller, and plot the results on a
graph to show how the complete system performs.

The AutoCode code generator generates C language real-time code. Rapid
code generation permits major modifications in control strategies instantly,
without days or weeks of coding and debugging. Since the code is generated
directly from the SystemBuild model, the resulting controller code exactly
matches the original design.

6. Implement and test the controller design with real-time software.

You can implement the design you produced with Xmath and SystemBuild
directly on the RealSim controller, saving time and improving product quality.
You can build the entire prototype as hardware, or you can implement part of
your design as hardware and leave the rest of the design simulated. This allows
you to build your prototype in stages, with two major benefits:

= The expense of building the prototype can be divided.

= You can build and test a portion of the prototype as hardware to see if it
functions as desired before spending time and money to build the complete
prototype.

I/0 boards let you connect prototype hardware to your model. (See the RealSim
PC Controller System Reference and the RealSim AC-1000 Controller System
Reference.) The external prototype hardware that you design replaces a part of the
simulation model you designed under SystemBuild.

To connect hardware to your model by using an I/O board:

1. Change the assignment of prototype hardware from the simulation model to
the I/O board.

Use SystemBuild to generate an RTF file.
Use the RealSim autocode command to generate real-time software.

Use apbuild to compile and link the code produced by AutoCode.

AN B

Use rtmain to download and run the application on the RealSim controller.

You can collect data and plot the results, just as you did during the host
simulation earlier. As before, if the plot indicates deficiencies in your model,
you can go back to SystemBuild and improve your design. You can then
perform the real-time simulation again.

131

MATRIXy 7.0
Getting Started Guide

You can also simulate embedded controller environments in real time, testing
controllers offline before they undertake critical functions.

Each time you simulate the model and make improvements, you get closer to
realizing the real-world model.

7.2 RealSim Controller Models

For detailed up-to-date information about RealSim controller models, and their
hardware and software components, see the following:

= RealSim PC Controller System Reference
= RealSim AC-1000 Controller System Reference

7.3 RealSim Tutorials

Now that you have a basic understanding of the RealSim controller, you are ready
to actually build and run a model on the RealSim controller. This section presents
two tutorials:

= Running a Demonstration Model shows you how to copy and run a
demonstration project on your RealSim controller. Details of the project’s
creation are omitted from this section. The tutorial shows you how to
download and run one of the demonstration models.

= Building and Running a New Model provides the simulation of a simple
model using a gain block.

132

7
RealSim

NOTE: We assume that the MATRIX Product Family software and RealSim
controller have already been installed in accordance with the MATRIX Product
Family Installation Procedures and the RealSim Installation Guide for PC
Controllers (Windows Hosts) or the RealSim Installation Guide for AC-1000
Controllers (Windows NT Hosts). We also assume that you have set up and
powered up your controller as instructed in your system reference manual and
installation guide.

For a complete procedure to build and run a model on the RealSim controller, see
the RealSim User’s Guide.

7.3.1 Running a Demonstration Model

We provide various demonstration models that you can download and run on
your RealSim controller. These demonstrations range in complexity from easy to
very difficult. This section provides an example of one of the easier
demonstrations that you can run.

This demonstration is an example of a common automotive cruise control system.
The simulation allows you to activate the cruise control and set the speed of a
simulated vehicle. The simulation also models a typical vehicle’s acceleration and
braking properties. It is designed to familiarize you with the use of the RealSim
controller and its development tools by providing step-by-step instructions that
describe how you:

= Use copydemo to copy a demonstration model
« Generate downloadable code
= Generate an I/O configuration for the model

= Run the simulation in real-time and monitor its progress

133

MATRIXy 7.0
Getting Started Guide

Preparing a Demonstration Model

To download and run your simulation on a RealSim controller:

1. If a RealSim Command Prompt window is not already open, from your
Windows taskbar select Start— Programs — RealSim version - RealSim to open a
window with the current RealSim environment.

A CAUTION: Do not use any other Command Prompt window when simulating a
RealSim project. You must have this RealSim environment.

2. On the command line, enter the cpcprj command to switch your current
default directory to something like c:\users\your_name\cpcprj:

cpeprj
3. Enter the copydemo command to copy a demo:
copydemo

If you are asked to choose which RealSim target because of multiple-
controller installation, select C_PC for this demo.

A list of available demonstration models appears.

4. For this example, choose the following demonstration model:
super_cruise

5. When prompted for the location for the copy, press Return.

This creates a subdirectory called super_cruise and copies the files for the
super_cruise model to that directory.

6. When prompted for the controller target name, type the IP name, and press
Return.

You can obtain the IP name from whoever installed the RealSim controller.

7. When prompted for the RealSim target type, enter the target type name, for
example, C_PC, and press Return.

8. When prompted for an animation package, choose the Altia Graphics:
ALTIA
9. Continue to answer the remaining prompts using the default values.

AutoCode generates code for the demonstration model, and the system
compiles and links it.

134

7
RealSim

Activating Data Acquisition

With the demonstration model completely built, activate the RealSim GUI to gain

access to the RealSim utilities. In this case, we need to use the Data Acquisition
Editor.

To gain access to the RealSim utilities:
1. From the RealSim command window, launch the RealSim GUI by entering:

realsim

The RealSim GUI provides a graphical interface to the rapid-prototyping
process (see Figure 7-3).

Figure 7-3 RealSim GUI for Demonstration Model

. RealSim GUI H=] 3

Start Hew Inwrolee Ilalzeproject
Xmath/ S
SystemBuild Edit animation. cfg
[trwolce Retarget
Edit target config cfg
Inwokee Calibrate
Animation
AutoCod P
utotode Builder Edit calibrate cfg
View AutoCode
Data Acg. Editor
Compile Hardware WView Connections
and Connection Animation Client
Link Editor
Convert DA Data
Spawn
Hide Utilities
Dovnload

and

Run Exit

Project = super cruise Target Mame = zendex] D03 AC-104 or PCI-Pro
Animation Paclage = ALTIA Calibration Paclzage = NONE

See 7.3.2 Building and Running a New Model, p.144 for more information on
using this GUIL

135

MATRIXy 7.0
Getting Started Guide

2. Launch the Data Acquisition Editor by clicking the Data Acq. Editor button.
The data acquisition screen appears.
Notice that the DISPLAY field indicates SB_INPUTS.

3. Click DISPLAY to change that value to SB_OUTPUTS.
Now, the outputs of the super_cruise model appear.

4. Click channel #12, Time; notice that data acquisition (DA_Setting) is set, has
trigger values (Trigger Above Value and Trigger Below Value), and has the auto-
plot feature (Auto Plot on DA Upload) set

Figure 7-4 shows the Data Acquisition Editor. The table summarizes the data

acquisition settings for each of the outputs.

Figure 7-4 Data Acquisition Editor

F. Data Acquisition E ditor [DAE) =]

Hints

SE channel selected: 12, "Time"

<- SBE OUTPUT -Z- %+ £—————— DATA ACQUISITIOH (DA} ——————
chan lsbel(l:10) type wod ch# DA dec trig sbove trig helow plt

1 auto speed N0 LEVICE o o ON 1 1E+038 —-1E+038 O l
4 Throttle NO DEVICE o o OFF 1 1E+038 —-1E+038 OFF

3 Cruisedn NCiDEVICE o o OFF 1 1E+038 —-1E+038 OFF

4 Setipeed Mo DEVICE a o OFF 1 1E+035 -1E+035 OFF

5 Dec Speed NO DEVICE o o OFF 1 1E+038 —-1E+038 OFF

& Inc:Speed NCEDEUICE o o OFF 1 1E+038 —-1E+038 OFF

7 SpeedError NO DEVICE o o O 1 1E+038 —1E+0335 O

g Desiredsp NCiDEVICE o o OFF 1 1E+038 —-1E+038 OFF

a HNoisySpeed MO DEVICE a o OFF 1 1E+035 -1E+035 OFF
10 engine RPM NO DEVICE o o Loi0) 1 1E+038 —1E+038 O

11 Gear_R;tio NCEDEUICE o o ON 1 1E+038 —-1E+038 O

12 Time HO DEVICE 0 0 0OH 1 10 -10 OH
DA Setting............ QN
DA Decimation Factor.. @ 1 Trigger Ahove Value... : 10,
Au;o Plot on Eﬂ Upload : CN Trigger Below Walue... : -10.

CAHCEL Edit Operation Display Selection Mode DOHE

modify config set 1 3E_OUTPUTS single

136

7
RealSim

5. Click DONE to return to the RealSim GUI

Running the Demonstration Model on the RealSim Controller

After setting the data acquisition information, the demonstration model is ready
to be simulated in real time. Since we have the Auto Plot data acquisition setting
turned on, we have to use Xmath to view the plot.

To simulate the model in real time:

1. If you do not already have Xmath running, click the Start New Xmath/
SystemBuild button on the RealSim GUI to start Xmath.

At this point do nothing more with Xmath.
2. On the RealSim GUI, click the Download and Run button.

In a Command Prompt window, you see the connection to the controller and
download of the demonstration model. When the download is complete, the
Altia graphics window and IA Control window appear (see Figure 7-5 and
Figure 7-6).

Figure 7-5 Altia IA Control Window

E‘ 1A Control Window M[=] E3

Messages

SYRUTIL ZENDEX1 connected with unknown client at Internet addr)
Client downloaded 10 configuration {updated 10O table file "SUPER_CRH]
Client's new Data Acquisition set up accepted.

Start Hardware Exit Start Data
Reset . o
Controller <CAUTION Graphics Actuisition

137

MATRIXy 7.0

Getting Started Guide

Figure 7-6 Altia

Graphics for super_cruise Demonstration Model

2 Altia Auto Cruize Control Dizplay

/ IGNITION

E\;!Allia Cruize Control Engineering View

138

Speed(MPH)

Once the Altia graphics and IA Control window appear, switch back to Xmath,
and enter the following command into the Xmath Commands window:

lock=attach_realsim()

The purpose of this command is to establish a data connection between
Xmath and the IA client (Altia in this case). This provides a data channel for
the data acquisition data to move from the controller to the IA client and then
to Xmath for plotting.

When the connection is made, the RVE NGC Client window appears (see
Figure 7-7); it contains the text: XMATH’s RVE Link To RealSim Target.

7
RealSim

Figure 7-7 RVE NGC Client Window

E_RVE NGC CLIENT [Hi[=] [E3

ZMATH' s BVE
LINK TO
RealSim Target

DISCOHHECT
RealSim
Target

4. Move the RVE NGC Client window aside or iconify it so as to not obscure the
Altia graphic and IA Control window.

5. In the IA Control window, click the Start Controller button.

The model is now running on the controller.

Using the Altia Graphics for Super_Cruise Demonstration Model

With the super_cruise model now running, the Altia graphics are active. This
section uses some of the graphics to show the simulation. You can change the
position of the gas pedal, use the brake, or change simulation parameters (Incline
and Noise, for example). Play with the various operations, and then have fun with
the simulation!

Changing the Position of the Gas pedal:

To change the position of the gas pedal:

1. Inthe Altia graphics window, click near the top of the image of the GAS pedal.
With MB1 held down, move the cursor up and down.

Notice that the pedal tracks the mouse.
2. Release the mouse button to set the GAS pedal position.

The value represented by the pedal does not change while you are holding the
mouse button, so you must release the button before the value changes. The
pedal remains where you leave it when you release the mouse.

139

MATRIXy 7.0

Getting Started Guide

Assuming that you pushed down on the pedal (more gas), notice that the
speedometer begins to increase. Also, in the Altia Cruise Control Engineering
View, notice that the Speed plot rises.

Changing the Position of the Brake Pedal

To change the position of the brake pedal:

1.

In the Altia graphics window, click near the bottom of the image of the BRAKE
pedal. With MB1 held down, move the cursor up and down.

Notice that the pedal tracks the mouse.
Release the mouse button, and the pedal remains.

Again, the value represented by the pedal does not change until you release
the mouse button. When the brake is on, BRAKE changes to BRAKE ON.

Assuming that you pushed the BRAKE pedal down, notice that the vehicle’s
speed decreases.

Acquiring Data with the Altia Interactive Animation Client

The Altia client does not currently support pre-triggered data acquisition, so you
must manually trigger the data acquisition.

To manually trigger data acquisition:

1.

140

If your vehicle is stopped, get it moving again by pressing the GAS pedal (see
above).

When it is evident that vehicle’s speed is changing, click the Start Data
Acquisition button in the IA Control window.

Some messages appear in the message area about the acquisition.

Notice that the name on the button previously labelled Start Data Acquisition
has changed.

After three to five seconds, click the Stop Data Acquisition button.

The data is stored into a .raw file that Xmath can read directly. Since we have
set the auto-plot feature and we are connected to Xmath, the data is
automatically plotted. Figure 7-8 is an example output; your plot probably
looks different.

7
RealSim

Figure 7-8 Acquired Simulation Data

77 ¥Xmath Graphics: Unbound Graph Object |- [O] %]
File Edit ‘“iew Optionz Tools ‘Windows

LW =1 P Pl VPN =T R=d =20)

Fri Now 13 1643508 1558
T

ced

Buto_=p

T T T

] |]

' | '

-1.4901161=-008 T T T
] |]

] |]

SpeedError

engine_FFH

Time [=]

For additional information on automatic plotting, see the RealSim Command
Reference, Chapter 3 (attach_realsim, read_rawfile, and realsim_ autoplot
topics) or Xmath documentation for details.

Run-Time Variable Editing with the Altia Client

The Altia client does not currently support a graphical interface to run-time
variable editing (RVE). You must use the equivalent Xmath commands. (See the
RealSim Command Reference, Chapter 3, for details on the RealSim commands
executed from Xmath to perform RVE: rve_start, rve_get, rve_put, rve_stop,
rve_update, rve_quit.)

141

MATRIXy 7.0
Getting Started Guide

To perform run-time variable editing using Xmath commands:

1. With the simulation running, switch back to the Xmath Commands window
and enter the commands below.

a.

Start RVE:

rve_start()

Get run-time parameter:
rve_get("stiffness")

Set new value of run-time parameter:
rve_put(“stiffness”, 3.2)

Update the value onto the controller:
rve_update()

Discontinue RVE:

rve_stop()

The stiffness run-time parameter affects the stiffness of the drivetrain in our
simulated vehicle. Changing the value as we did dramatically affects the
model.

2. Click the Start Data Acquisition button in the IA Control window.

3. After three to five seconds, click the Stop Data Acquisition button.

Since you already have auto-plotting set after data acquisition, you can see
evidence of the parameter change in your plot. Figure 7-9, p.143 is a sample
output; your plot probably looks different.

142

7
RealSim

Figure 7-9 Acquired Data After a Change in Parameter

2% ¥math Graphics: Unbound Graph Object

File Edit “iew Options Tools Windows

LN =] R P BN =R

Thu Jen 22 113744 1558

SpeecError

i i i i i

1 1 | 1 1

1 1 | 1 1

1 1 | 1 1
-1.4501161e-008 T T : r ; ———-

1 1 | 1 1

1 1 | 1 1

1 1 | 1 1

1onnn 7 7 . 7 7
annn
1 BO0D
4000
Z0on

FFt

engine

Geer_Retio

I I I I I
1 1 | 1 1
1 1 | 1 1
1 1 | 1 1
1.5 T T T T T ----
1 1 | 1 1
1 1 | 1 1
1 1 | 1 1

1384 , ,
13634 - - ----- SREEEEEEE -

1362 - - ---- - R oo L--
1361 - - ---- .

L ey m R
13891 - = [———T——- = === ------p------- S REEEEEEE
1358

Time

ra b
L
-~
ok
o

Time [=]

Ending the Simulation

To end the simulation and stop the controller:
1. Click the Stop Controller button.

At this point, you can restart the simulation by clicking the Restart Controller
button. Restarting the controller restores all parameter settings, including the
one changed by RVE.

143

MATRIXy 7.0
Getting Started Guide

If you restart the controller, return to Step 1 to end the simulation.

2. When you are all done and the controller is stopped, disconnect the
connection to Xmath by clicking the DISCONNECT RealSim Target button in the
NGC Client window.

The NGC Client window disappears.

3. Click Hardware Reset to stop and reset the controller, close the Altia client, and
return to the RealSim GUI.

NOTE: Clicking Exit Graphics instead of Hardware Reset closes the Altia client but
does not stop the controller.

7.3.2 Building and Running a New Model

This section shows you how to build a simple model using a gain block with a
separate animation picture and run it on the C_PC type target controller.
(Instructions for other models are similar.)

NOTE: The procedures given in this section assume that you have set up and
powered up your controller as instructed in your system reference.

Creating a RealSim Project

To create a RealSim project:

1. If a RealSim Command Prompt window is not already open, from your
Windows taskbar select Start— Programs — RealSim version - RealSim to open a
window with the current RealSim environment.

A CAUTION: Do not use any other Command Prompt window when creating a
RealSim project. You must have this RealSim environment.

2. Enter the cpcprj command to switch your current default directory to
something like c:\users\your_name\cpcprj:

cpeprj
3. Create a subdirectory and change to it:

mkdir gain_ia
cd gain_ia

144

7
RealSim

4. Bring up the RealSim graphical user interface (GUI):
realsim

5. When the Invoke Makeproject dialog appears, click YES.

Another Command Prompt window automatically opens. You might have to
cycle through the open windows on your desktop to find this new window.

6. Click inside the new Command Prompt window.
7. For the Project Name prompt in the gain_ia directory, press Return.
The RealSim GUI, shown in Figure 7-10, comes on view.

Figure 7-10 RealSim GUI After Creation of gain_ia Project

. RealSim GUI H=] 3
B Needs Start Hew Invoke Makeproject
Updating SHriE Y Edit animation cfg
m SystemBuild :
m Inwioke Retarget
* Edit target_config cfz
Animation
AuntoCode
m m Eullder
Viewr AutoCode
l l Data Acg. Editor
Complle Hardware Wiew Cofmections
and Connection Anitnation Client
m Link m Editor
Cotvert DA Data
l Spawn
Hide Utilities
Dovmload
and
Run Exit
Project = gain 1a Target Mot Defined [trwolce retarget
Animation Package = [A Calibration Paclzage = NONE

8. If the RealSim GUI does not have the utility buttons shown on the right of
Figure 7-10, click the Show Utilities button.

9. In the list of utilities on the GUI, click Invoke Retarget.

145

MATRIXy 7.0
Getting Started Guide

10. Answer the prompts (not all prompts appear on all controllers) as follows,
replacing the responses provided with the correct responses for your
controller. (Answer any other prompt that is not listed here by pressing
Return.)

a. Controller host name [realsimcontroller]: your_target_name
b. RealSim target type (C_PC C_PPC604) [C_PC]: C_PC
c. Animation Package to use (IA VBIA ALTIA) [IA]: IA

When you complete this process, the following message appears:

Successfully updated target_config.cfg

Creating the SystemBuild Model and an RTF File of the RealSim Top-Level SuperBlock

In this section, we build a model in SystemBuild that will be used for SystemBuild
and RealSim simulation. However, the requirements for each are a little different.
Later, we add interactive animation to this model.

The requirements for the RealSim simulation consist of a top-level SuperBlock
and a save file (RTF) of this SuperBlock. For this model, the top-level SuperBlock
is called gain_ia; it consists of a simple Gain block and an AlgebraicExpression
block.

To run the RealSim model in SystemBuild simulation, you must create a wrapper
SuperBlock that contains a reference to your RealSim top-level SuperBlock
(gain_ia) and the interactive animation UserCode block (usrial). The outputs of
the RealSim top-level SuperBlock must be hooked up to the inputs of the UCB,
and the outputs of the UCB must be hooked up to the inputs of the RealSim top-
level SuperBlock. The usrial UserCode block performs the function of calling the
interactive animation display during SystemBuild simulation.

To create a SystemBuild model and an RTF file of the RealSim top-level
SuperBlock:

1. If you have not already started Xmath, click the Start New Xmath/SystemBuild
button on the RealSim GUL

2. When Xmath window comes up, type the following in the commands area:
build

After a short time, SystemBuild is loaded, and the Catalog Browser and the
SystemBuild Editor window are present on your screen.

146

7
RealSim

From the Catalog Browser, create a new SuperBlock (see 4.3.1 Creating a New
SuperBlock, p.55).

The SuperBlock Properties dialog comes on view.
In the SuperBlock Properties dialog;:

a. Enter gain_ia in the Name field.

b. SetInputsto 1.

c. SetOutputs to 2.

d. Change the SuperBlock Type to Discrete.

e. Click OK.

Place a gain block within the gain_ia SuperBlock (see 4.3.2 Creating a New
Block in a SuperBlock, p.56).

Open the gain block’s block properties by placing the mouse pointer over the
gain block and pressing Return.

a. Enter gain_block in the Name field.

b. On the Outputs tab, enter gainoutput in the table cell for the #1 output of
the Output Label column.

¢. On the Display tab, enable Show Output Labels.
d. Click OK.

Place an algebraic expression block (from the Algebraic palette) with the
gain_ia SuperBlock.

Open the gain block’s block properties by placing the mouse pointer over the
gain block and pressing Return.

a. Enter time_block in the Name field.
b. On the Code tab, enter the following equation: Y = T;
This sets the output equal to time.
c. Click OK.
Connect the gain block to external inputs and outputs (see Connecting Blocks).
a. Connect the first external input of gain_ia to the input of gain_block.

b. Connect the output of gain_block to the first external output of gain_ia.

147

MATRIXy 7.0
Getting Started Guide

c. Connect the output of time_block to the second external output of
gain_ia.

Your diagram should now look similar to the one in Figure 7-11.

Figure 7-11 SuperBlock gain_ia After Connections

Discrete SuperBlock Sample Period Sample Skew Inputs Outputs Enable Signal
gain_ia 0.1 0. 1 2 Parent

gain hlock

time block

10. Update the current SuperBlock in the Editor window into the Catalog
Browser by selecting File - Update, and close this Editor window by selecting
File - Close.

11. From the Catalog Browser, create another new SuperBlock.
12. In the SuperBlock Properties dialog:

a. Enter in the Name field: gain_top.
b. Set Inputs to 0 and Outputs to 1.

c. Change the SuperBlock Type to Discrete.

o

Ensure that the Sample Period is 0.1.
e. Click OK.

148

7
RealSim

13. Create a UserCode block (UCB) in the newly created SuperBlock.
The UCB is found on the User Programmed palette of the Palette Browser.

NOTE: This code block brings the Interactive_Animation panel into the SystemBuild
simulation.

14. Open the UCB’s block properties by placing the mouse pointer over the user
code block and pressing Return.

In the Name field, name the block ia.

b. On the Parameters tab, blank out the File Name parameter value so that
there is no filename specified.

c. For the Function Name parameter value, enter usrial.

NOTE: The above name ends with the numeral one (1).

d. Set the Inputs field to 2 and the Outputs field to 1.
e. Click OK.

15. Select the ia block in the SystemBuild Editor window, and then select Edit - Flip
Horizontal to flip the orientation of the newly created SuperBlock.

16. Update the current SuperBlock in the Editor window into the Catalog Browser
by selecting File - Update.

17. Create a reference to the existing SuperBlock, gain_ia:
Bring up the Catalog Browser.
b. In the Catalog Browser, click the SuperBlocks folder in the left pane.

c. In the right pane, click the icon representing gain_ia, and drag the
SuperBlock into the SystemBuild Editor window containing gain_top.

18. Connect the SuperBlock reference and the UCB as follows:

a. Connect the first output of the gain_ia SuperBlock reference to the first
input of the UCB.

b. Connect the second output of the gain_ia SuperBlock reference to the
second input of the UCB.

c. Connect the output of the UCB to the input of the gain_ia SuperBlock
reference.

149

MATRIXy 7.0
Getting Started Guide

d. Connect the first output of the gain_ia SuperBlock to the external output
of gain_top SuperBlock.

You should now have a diagram similar to Figure 7-12.

Figure 7-12 Completed gain_top SuperBlock Model

Dizcrete SuperBlock Sample Period Samgple Skew Inputs Outputs Enahle Signal

gain_top 0.1 0. 0 1 Parent
gain ia
[1z]
(1>
SUFER
BLOCK
o.1
ia
N
————1
USER
=< u
CODE
s ———=2
usrial

19. From the SystemBuild Editor window containing gain_top, select File - Update,
and close this Editor window by selecting File - Close.

20. From the Catalog Browser, save your model, and name it gain_top.cat (see
Saving a SuperBlock).

21. Generate an RTF file (.rtf) for the gain_ia SuperBlock:
a. Select the gain_ia SuperBlock in the right pane of the Catalog Browser.

b. Select Tools - AutoCode in the Catalog Browser to open the Generate Real-
Time Code dialog.

150

7
RealSim

c. Inthe Generate Real-Time Code dialog, change the Language option to be

RTF only.
d. Click OK to generate the RTF file.

You can watch the progress of the RTF file generation process in the log

area of the Xmath window.

At this point, we have made a new project and have just completed building and
generating the RTF file for our model. The RealSim GUI follows the progress of
creating, building, and executing a model on the controller. Compare Figure 7-13

to Figure 7-10, p.145 to see the progression.
Figure 7-13 RealSim GUI After Model and RTF Creation

E. RealSim GUI M= E3
m Needs N —— Invoke Makeproject
Updating HrlE iy Edit animation cfg
SystemBuild -
[trwoke Fetarget
Edit target config cfg

Invoke Calibrate

AutoCod Animation y—" P
nhotede - Buillder L calibrate.c1g

B Wiew AutoCode
1 l Data Acg. Editor
Compile Hardware Wiew Connections
and Connection Anirmation Clent

u Link u Editor
Convert DA Data
t SOAWL
Hide Utilities
Dovnload
and
LTy Exit
Project = gain_ia Target Mame = zendex1 D03 AC-104 or PCI-Pro
Anirnation Package = TA Calibration Package = NONE

151

MATRIXy 7.0
Getting Started Guide

Building the Interactive Animation Panel

Figure 7-14

The Interactive Animation graphics that you create below are the graphical
representation of the User Code Block labeled ia in the gain SuperBlock.

To create graphics for Interactive Animation:

1. Click the Animation Builder button on the RealSim GUI to launch the Interactive
Animation builder tool.

The Interactive_Animation picture window and the Control_Panel window
appear. Figure 7-14 shows these two windows with the picture that we are
going to build.

Completed Interactive Animation Picture

1 Interactive_Ammation [|O] %]

: > gainoutput 0.00

==

i Control_Panel =] 3
LOAD PICT		DEFINE		DRAG		HOBRMAL,		AHNTMATE
SAVE PICT		HODIFY		REDUCE		FITWIHDOW		STOP
DETAIL		DELETE		EHLARGE		HARDCOFY		HOLD
RTF HAMES		COFY		LABELS OFF		HELP		EXIT

152

7
RealSim

2. Build the Slide icon shown in Figure 7-14 as follows:

a.

Click DEFINE in the Control_Panel window.

The Animation Palette appears. This palette contains six sets of icons,
each with two pages. Each set is indicated by two letters in the second
row at the bottom of the palette; for example, Ml indicates Monitor
Animation Icons. The name is expanded in the middle cell on the bottom
row of the palette. The top row has two cells numbered 1 and 2; these
represent the pages of the set. The current set and page have asterisks on
either side of the mnemonic and page number. You can change either by
clicking in the appropriate cell.

Click Cl and then 1 at the bottom of the window to bring up page 1 of the
Control Animation Icons

NOTE:

There are several Slide icons that are very similar in this palette; if you do

not use the one from the CI set, your model will not work correctly.

c. Click the Slide icon to place it in the Interactive_Animation window.

The Animation Palette disappears.
NOTE: This Slide icon contains an initial value of 0, which shows on the icon.

d. Double-click the Slide icon in the Interactive_Animation window to bring up
the SCON/SLIDE CONTROL dialog (see Figure 7-15).

e. Set the Icon Title to gain_input.

f. Ensure that the Maximum Gain Value is 100 and the Minimum Gain Value is -
100.

g. Click DONE when complete.

153

MATRIXy 7.0
Getting Started Guide

Figure 7-15 SCON/SLIDE CONTROL Dialog

1SCOMJSLIDE CONTROL

RS NGRS ALY Thite EBlack FRed Green
Eorder Color : Elack

Icon Title : 'gain input!

Minimam Output VWalue : -100.

Maximum Output YValue : 100,

Initial Output Value : 0O

Hegative Decrement : 5.

Poslitive Increment : 5.

VYalue Color ; Elack

Icon Title Color : Elack

Region 1 Color : Red

Cutoff 1-2 : -75.
BReglon 2 Color :
Cuteff 2-3 : -50.
Reglion 3 Color :
Cutoff 3-4 : 50.
BReglon 4 Color :
Cutoff 4-5 : 75.
Reglion 5 Color : Red
Format : Decimal

Humber Length : 29

Humber Decimal Places : 2

Tellow

Green

Tellow

CAHCEL

Magenta

Tellow

=1 E3

Blue

DOHE

3. Build the Numerical icon shown in Figure 7-14, p.152 as follows:

Click DEFINE in the Control_Panel window.

b. Click Ml and then 2 at the bottom of the window to bring up page 2 of the
Monitor Animation Icons.

c. Click any one of the numbers that you see to place it in the
Interactive_Animation window (example uses 4.00).
The numbers themselves mean nothing; they simply illustrate the font
and font size that will appear in your animation.

d. Double-click the Numerical icon in the picture window to bring up the DV/
DISPLAY VALUE dialog.

e. Examine these values, and make any desired changes.
The example uses the defaults.

f. Click DONE when complete.

154

7
RealSim

Build the Single Line icon shown in Figure 7-14, p.152 as follows:

j-

Click DEFINE in the Control_Panel window.

Click Ml and then 1 at the bottom of the window to bring up page 1 of the
Monitor Animation Icons.

Click the Single Line icon to place it in the picture window.
The Animation palette disappears.

Double-click the Single Line icon in the picture window to bring up the
SC1/STRIP CHART dialog.

Ensure that the Maximum Value is 100 and the Minimum Value is -100.

Change the Icon Title to be gain_output (program encloses in single
quotes).

Set the X Axis Label to be Time.

Set the Y Axis Label to be Value.

Change the First Threshold Color to Blue for greater visibility.
Click DONE when complete.

Build the Altimeter icon shown in Figure 7-14, p.152 as follows:

[

7 Q@

-

Click DEFINE in the Control_Panel window.

Click Ml and then 1 at the bottom of the window to bring up page 1 of the
Monitor Animation Icons.

Click the Altimeter icon to place it in the picture window.
The Animation palette disappears.

Double-click the Altimeter icon in the picture window to bring up the
SC1/STRIP CHART dialog.

Change the Icon Title to Time.

Set One Rotation Value to 60.

Set Rotation Ratio to 12.

Set Number of Major Tick Marks to 12.
Click DONE to dismiss the dialog.

155

MATRIXy 7.0
Getting Started Guide

Click RTF NAMES in the Control_Panel window to load the labels and names
from the generated RTF file.

The name of your generated file appears in the dialog.

Accept the default RTF file by clicking DONE.

Connect the icons to the inputs and outputs of the model as outlined below.

This is just like connecting a block within a SystemBuild Editor window except
that the outputs of an icon connect to inputs, and the inputs of an icon
connect from outputs.

a.

Click LABELS ON in the Control_Panel window to show the connections.
Initially, there are none, but small, red indications appear.

Connect the output of the Slide icon named gain_input to the first gain_ia
input by clicking MB2 inside the Slide icon and then clicking MB2 in an
empty region of the picture window. In the Connection Editor dialog, click
in the circle representing the slide control output and then the circle
representing the gain_ia input; then click Done.

NOTE: Clicking Ctrl MB1 is equivalent to clicking MB2.

NOTE: If the Connection Editor window does not appear, look behind your other
windows.

156

Connect the Numerical icon to the first gain_ia output by clicking MB2 in
an empty region of the picture window and then inside the Numerical
icon. In the Connection Editor dialog, click in the circle representing the first
gain_ia output and then the circle representing the display value; then
click Done.

Connect the Single Line icon, now named gain_output, to the first gain_ia
output by clicking MB2 in an empty region of the picture window and
then clicking MB2 inside the Single Line icon. In the Connection Editor
dialog, click in the circle representing the first gain_ia output and then the
circle representing the display value; then click Done.

You have now hooked up two icons to the first output of gain_ia.

Connect the Altimeter icon, now named Time, to the second gain_ia
output by clicking MB2 in an empty region of the picture window and
then clicking MB2 inside the Altimeter icon. In the Connection Editor
dialog, click in the circle representing the second gain_ia output and then
the circle representing the altimeter; then click Done.

7
RealSim

9. Save the picture file by clicking SAVE PICT in the Control_Panel window.

10. Click DONE in the subsequent dialog to accept the default picture filename,
gain_ia.pic.

11. Click EXIT to close the interactive animation builder too.

Notice that the RealSim GUI now indicates that the Animation Builder is
complete, as shown in Figure 7-16.

Figure 7-16 RealSim GUI after Animation Builder Completed

E. RealSim GUI M= E3
B Meeds Start Hew Inwoke Wakeproject
Updating HrlE iy Edit animation cfg
SystemBuild -
[trwoke Fetarget
Edit target config cfg
Invoke Calibrate
AutoCod Animation y—" P
ode
- ure Builder e
Wiew AutoCode
1 Data Acg. Editor
Compile Hardware Wiew Connections
and Connection Anirmation Clent
u Link u Editor
Convert DA Data
t SOAWL
Hide Utilities
Dovnload
and
LTy Exit
Project = gain_ia Target Mame = zendex1 D03 AC-104 or PCI-Pro
Anirnation Package = TA Calibration Package = NONE

157

MATRIXy 7.0

Getting Started Guide

Simulating the Model in SystemBuild

To simulate the model with the SystemBuild simulator using interactive
animation:

1.

158

From the Xmath command area, enter the following value:
t=1[0:0.1:10007;
Make the SystemBuild Catalog Browser window the active window.

If you closed that tool after you created the model, you need to start it again
and load the gain_top.cat file that you saved in Creating the SystemBuild
Model and an RTF File of the RealSim Top-Level SuperBlock, p.146.

From the Catalog Browser, open the gain_top SuperBlock in a SystemBuild
Editor window (see 4.3.4 Opening a SuperBlock in the Editor, p.58).

From the SystemBuild Editor window, select Tools - Simulate.

The SystemBuild Simulation Parameters dialog appears.

On the Parameters tab, set the following parameters:

a. Set Time Vector/Variable to t.

b. Leave Input Data/Variable blank (no external inputs to SuperBlock).
c. Enable the Plot Outputs checkbox.

d. Enable the Interactive check box.

e. Click OK.

The Interactive Simulator (ISIM) and the Interactive_Animation_Display
windows appear.

In the Interactive Simulator window, select Simulation — Resume to begin.
Click in the Interactive_Animation_Display window.

During simulation, you can move the Slide icon’s slider to vary the external
input.

Move the slider by clicking and holding down MB1 on the rectangular shape
just above the scale and below the value indicator; move the slider to the left
and right.

The slider tracks the mouse movements. Moving to the left decreases the
slider’s value, while moving to the right increases the value. Notice that the
output graph changes as the slider changes.

7
RealSim

When the simulation completes, select Simulation — Resume to run the
simulation again, or select File - Exit to end the interactive simulation and
return to SystemBuild.

When the Time reaches 1000, the simulation completes and the
Interactive_Animation_Display window closes. After you exit, the plot of your
simulation appears. Figure 7-17 shows a simulation plot.

Figure 7-17 Simulation Plot

27 ¥math Graphics: Unbound Graph Object |- [O] %]
File Edit ‘“iew Optionz Tools ‘Windows

gaincutput

LW =1 P Pl VPN =T R=d =20)

1on

&l

-5l

-100 I 800 Lo

=
[ax]

Tirne

10.
11.

12.

13.

Close the Plot window.
Exit SystemBuild by selecting File - Exit in the Catalog Browser.
This closes all open windows in SystemBuild.

If you receive the prompt, Save Changes?, click NO since you have not made
any changes to the model.

Exit Xmath by selecting File - Exit.

If you are asked, there is no need to save any data.

159

MATRIXy 7.0
Getting Started Guide

Simulating the Model on the RealSim Controller

To simulate the model on the controller:
1. Click AutoCode on the RealSim GUI.

Notice that the RealSim GUI continues to update your progress (see
Figure 7-18).

Figure 7-18 RealSim GUI After Running AutoCode

. RealSim GUI M= E3
B Meeds Start Hew Inwoke Wakeproject
Updating HrlE iy Edit animation cfg
SystemBuild -
[trwoke Fetarget
Edit target config cfg
Invoke Calibrate
AutoCod Animation y—" P
ode
e Buillder L calibrate.c1g
Wiew AutoCode
Data Acg. Editor
Compile Hardware Wiew Connections
and Connection Anirmation Clent
u Link u Editor
Convert DA Data
t SOAWL
Hide Utilities
Dovnload
and
LTy Exit
Project = gain_ia Target Mame = zendex1 D03 AC-104 or PCI-Pro
Anirnation Package = TA Calibration Package = NONE

In a companion Command Prompt window, AutoCode notifies you of the C
code generation.

2. Click Hardware Connection Editor on the RealSim GUI.

160

7
RealSim

The Hardware Connection Editor (HCE) window appears; it lists SB Inputs. All 1/
O types are MONITOR_INPUT.

a. No changes are needed, so click DONE.

Another Hardware Connection Editor (HCE) window appears; it lists SB
Outputs. Al I/O types are NO_DEVICE.

b. No changes are needed, so click DONE.
The Hardware Connection Editor (HCE) window closes.

The RealSim GUI continues to be updated based on your progress (see
Figure 7-19).

Figure 7-19 RealSim GUI After Getting the Hardware Connection Editor
F. RealSim GUI M=l E3
B Meeds Start Hew Invoke Makeproject
Updating Fmath/ Edit anitnation. ¢
SystemBuild s
[trwoke Fetarget
Edit target config cfg
Inwoke Calibrate
AutoCod Animation Fdit calib .
ode
uto - t calihrate cfg
Wiew AutoCode
Data Acg. Editor
Compile Hardware Wiew Connections
and Connection Animation Client
u Link Editor

Convert DA Data
‘ SOAWL

Hide Utilities
Dovnload
and
LTy Exit
Project = gain_ia Target Mame = zendex1 D03 AC-104 or PCI-Pro

Anirnation Package = TA Calibration Package = NONE

161

MATRIXy 7.0
Getting Started Guide

3. Click Compile and Link on the RealSim GUI.

In the Command Prompt companion window, you are notified that the
generated C code is compiled and linked.

Notice that the RealSim GUI continues to update your progress (see
Figure 7-20).
Figure 7-20 RealSim GUI After Compiling and Linking

. RealSim GUI M= E3

Start Hew Invoke IWakeproject

Xmath/

SystemBuild Edit animation cfg

[trwoke Fetarget
Edit target config cfg
Itrroke Calibrate
AutoCod Animation —— -
oie
uto Builder t calihrate cfg
View SutoCode
Data Acg. Editor
Compile e Wiew Connections
and Connection Animation Client
Link Editor
Convert DA Data
SOAWL
Hide Utilities
Download
and

Run Exit

Project = gain_ia Target Mame = zendex1 D03 AC-104 or PCI-Pro
Anirnation Package = TA Calibration Package = NONE

4. Click Download and Run on the RealSim GUI.

In the Command Prompt companion window, you are notified that the model is
downloaded to the controller.

The iaclient Control window and the Interactive_Animation_Display window
appear (see Figure 7-21).

162

7
RealSim

Figure 7-21 Interactive_Animation_Display and iaclient Control Windows

E Interactive_Animation_Dizplay
gain_ input 0.00
3
|.|.|.|.|.|.|.|.| 5
=
—-100._00 Time
Time
WL
_‘\]h\'\'\'l'lll Wigr o "%}
F. zendex1 iaclient Control Window [(O] x]
Client downloaded I/0 configuration (updated /O table file "GAIN_ [A iot") -
Client's Data Acquisition setup has DA turned off for every channel Scale
.) . Fregquency
Arry changes to Data Acquizition Pararneters will be ignored.
Hardware Set Data Buntime
Start Rezet Exit Acguisition Yariable
Controller <CAUTIOH:- Graphics Parameters Editing

5. Click START CONTROLLER in the iaclient Control window.
The model is now running on the controller.

6. Move the slider during the simulation by clicking and holding down MB1 on
the rectangular shape just above the scale and below the value indicator.
While the mouse button is down, move the slider to the left and right.

The slider tracks the mouse movements. Moving to the left decreases the
slider’s value, while moving to the right increases the value. Notice that the
output graph changes as the slider changes.

163

MATRIXy 7.0
Getting Started Guide

164

Perform one or more of the following actions:

a. Click STOP CONTROLLER in the iaclient Control window to stop the
simulation.

b. Click RESTART CONTROLLER to restart the simulation. Go to Step 6.

c. Click EXIT GRAPHICS to return to the RealSim GUL
The iaclient Control window disappears, but the controller is still running.

d. Click HARDWARE RESET (CAUTION) to stop the controller and to stop the
graphics.

Click EXIT on the RealSim GUI.

To re-connect the controller, type rtmain -r in the Command Prompt window.

Symbols

%CASE% 33
%ISIHOME% 33
%SYSBLD% 33
%XMATH% 33

Numerics

2-button and 3-button mice 52

A

Acrobat Reader 12

algebraic loop 95

AutoCode 4,117
code generator 19,53
configuration options 119
Tools Menu pulldown 117
Xmath command 117, 119

B

BetterStateChart block 94, 101
Chart Properties dialog 103

Index

Data Dictionary dialog 104
State Properties dialog 107

Transition Properties dialog 110

User Code dialog 108
block diagram 71

adding blocks 73

algebraic loop 95

connecting blocks 80

connecting SuperBlock inputs and outputs

editing block properties 74
event controller 100
resettable integrator 96
signal switch 98
simulation 86

block script 120

breakpoint, setting initial 43

building and simulating a model

C

CASE 33

Catalog Browser 49

caution 11

Chart Properties dialog 103
code generation 1,4, 19,53, 117
color settings

67

via Windows Control Panel 34

command area, Xmath 34

165

82

MATRIXy 7.0

Getting Started Guide

command modes
multiline 36
multiline mode 36
single-line 36

conventions
book 8
font 8
format 9
mouse 11
note, caution, and warning 11
symbol 10

customer support 29

D

Data Dictionary dialog 104
debug command 43
default ASCII text editor 53
display colors 34
document generation 4, 121
Documentlt 4,121

E

encapsulating a SuperBlock 88

environment variable
%CASE% 33
%ISIHOME% 33
%SYSBLD% 33
%XMATH% 33

event controller 100

events 94

Explorer 23

external connections 82

F

feedback control systems 127
finding a Help topic 25

166

G

generated code 19

neural network 53

generating

code 1,4,117
customizing 119

documentation 4,121
customizing 121, 125

getting started in Xmath 33

H

Help 21

Context-Sensitive 26

finding a topic 25

launching standalone (mtxhelp) 21
NetHelp engine 21

printing online Help 27, 28
starting 21

using examples 26

window, using 23

internal connections 80
ISIHOME 33

L

loading SystemBuild tutorial catalogs

M

67

MATRIXy Product Family 1
model

building and testing 130

mouse

2-button and 3-button 52

mtxhelp 22

N

Netscape Navigator, using with Help 27

Neural Network Module 19, 53
note 11
Notepad text editor 53

O

online Help 21
finding topics 25
navigating 24
starting 21
using context sensitive 26
using examples 26
window 23

online Help (see Help) 21

P

Palette Browser 51
parameter

template command 125
plot function 46
plot2d function 46
plotting 3,32, 38
print (online Help) 27, 28
printing documents 14

R

rapid prototyping 128
RealSim
environment 4,127
introduction 1
tutorials 132
resettable integrator 96

Index

Run-time Variable Editor (RVE) 52

S

Shift-Return 36
signal switch 98
simulation 60, 86
Simulator 51
spring-mass damper model 68
starting the online Help 21
State Properties dialog 107
SuperBlock Editor 50
SuperBlock Properties dialog 71
support 29
SYSBLD 33
system analysis 3
SystemBuild 3
block basics 68
block diagram 71
block library 51
Catalog Browser 49
Editor 50,54
features 50
getting started 54
modules 53
overview 3
Palette Browser 51
Simulator 51
simulator 51
SuperBlock Editor 50
SuperBlock Properties dialog 71
things to try 54
tutorial 67

T

technical support 29

template
command parameters 119, 125
TPL program 119, 125

text editor, specifying 52

tpl programming language 119, 125

167

MATRIXy 7.0
Getting Started Guide

Transition Properties dialog 110
tutorial block diagram

loading 67
tutorials

RealSim 132

SystemBuild 67

Xmath 38

U

uiPlot function 46
User Code dialog 108

W

warning 11

X

XMATH 33

Xmath
capabilities 31
command area 34
command line debugger 43
Commands window 34
features 31
getting started 33
invoking 33
overview 1
Plot window 34
tutorial 38

Xmath PGUI tools 46

168

	MATRIXx Getting Started Guide Windows Version
	Contents
	1 Introduction: The MATRIXx Product Family
	1.1� Xmath
	1.2� SystemBuild
	1.3� AutoCode
	1.4� DocumentIt
	1.5� RealSim
	1.6� Using This Manual

	2 MATRIXx Publications, Online Help, and Customer Support
	2.1� Online and Printed Book Conventions
	2.1.1� Font Conventions
	2.1.2� Format Conventions
	2.1.3� Symbol Conventions
	2.1.4� Mouse Conventions
	2.1.5� Note, Caution, and Warning Conventions

	2.2� Using Online Books
	2.2.1� Viewing, Printing, and Searching PDF Files
	Using Acrobat Reader
	Pasting Text Into Other Applications
	ATTENTION: Copy and Paste Known Problem
	Printing Documents
	Find and Search in PDF
	ATTENTION: Known Search Index Problem

	2.3 MATRIXx Installation Guides
	2.4 MATRIXx Getting Started Guide and Master Index
	2.5� Xmath Books
	2.6� SystemBuild Books
	2.7� AutoCode and DocumentIt Books
	2.8� RealSim Books
	2.9� Using Online Help
	2.9.1� Starting the Online Help
	Multiple Navigators
	Common Startup Questions

	2.9.2� Using the MATRIXx Help Window
	Help Window Layout

	2.9.3� Navigating Between Topics
	Topic Groupings

	2.9.4� Finding Specific Help Topics
	2.9.5� Using Help Examples
	2.9.6� Using Context-Sensitive Help
	2.9.7 Using MATRIXx Help with Different Versions of Navigator
	4.X Navigator Commands
	Navigator 3.X Commands

	2.10 MATRIXx Release Information
	2.11 MATRIXx Customer Support

	3 Xmath
	3.1� Introduction to Xmath
	3.1.1� Data Handling
	3.1.2� Numerical Analysis
	3.1.3� MathScript

	3.2� Getting Started in Xmath
	3.2.1� Directories Defined by Environment Variables
	3.2.2� Setting Your Display Colors
	3.2.3� Starting Xmath
	3.2.4� The Xmath Commands Window
	Menu Choices
	Command Window Execution

	3.2.5� Running Demos
	3.2.6� Accessing Online Help
	3.2.7� Stopping Xmath

	3.3� Performing Sample Xmath Tasks
	3.3.1� Creating Data
	3.3.2� Getting to Know Objects
	3.3.3� Saving, Loading, and Printing Data
	Graphics
	Printing Graphs

	3.4� MathScript
	3.5� The Xmath Debugger
	3.5.1� Starting the Debugger
	3.5.2� Using the Debugger
	3.5.3� Exiting the Debugger
	3.5.4� Correcting Errors During Debugging

	3.6� Xmath Plotting
	3.7� Exploring Additional Topics

	4 SystemBuild
	4.1� Introduction to SystemBuild
	4.1.1� Catalog Browser
	4.1.2� SuperBlock Editor
	4.1.3� SystemBuild Palette Browser
	4.1.4� SystemBuild Simulator
	4.1.5� Two- and Three-Button Pointing Devices
	4.1.6� Specifying an ASCII Text Editor
	4.1.7� SystemBuild Optional Modules
	Fuzzy Logic Block
	Neural Network Module
	State Transition Diagram Block

	4.2� Starting and Exiting SystemBuild
	Starting SystemBuild
	Exiting SystemBuild

	4.3� Basic SystemBuild Tasks
	4.3.1� Creating a New SuperBlock
	4.3.2� Creating a New Block in a SuperBlock
	4.3.3� Loading a Model File
	4.3.4� Opening a SuperBlock in the Editor
	4.3.5� Simulating the Model from the Xmath Commands Window
	4.3.6� Deleting a SuperBlock
	4.3.7� Navigating a SuperBlock Hierarchy
	Navigating with the Catalog Browser
	Navigating from the Editor Window

	4.3.8� Printing from the Editor Window

	4.4� SystemBuild Tutorial
	4.4.1� Designing a Block Diagram
	The Spring-Mass Damper Model
	SystemBuild Block Basics
	Getting Started on a Design

	4.4.2� Creating and Editing a Block Diagram
	Creating a SuperBlock
	Adding Blocks to the Block Diagram
	Editing Block Properties
	Connecting Blocks
	Connecting SuperBlock Inputs and Outputs
	Saving a SuperBlock

	4.4.3� Simulating a SuperBlock
	4.4.4� Encapsulating a SuperBlock
	Exercise

	4.4.5� Using a BetterStateChart Block to Model Events
	Resettable Integrator
	Signal Switch
	Event Controller
	BetterStateChart Block
	Return to SystemBuild for Final Connections
	Final Exercise

	5 AutoCode
	5.1� Generating Non-Customized Code
	5.2� Generating Customized Code

	6 DocumentIt
	6.1� Generating Non-Customized Documentation
	6.2� Generating Customized Documentation

	7 RealSim
	7.1� Feedback Control Systems
	7.1.1� Conventional Design
	7.1.2� Rapid Prototyping
	7.1.3� Other Simulations with a RealSim Real-Time Controller
	7.1.4� Building and Testing a Feedback Control System Model

	7.2� RealSim Controller Models
	7.3� RealSim Tutorials
	7.3.1� Running a Demonstration Model
	Preparing a Demonstration Model
	Activating Data Acquisition
	Running the Demonstration Model on the RealSim Controller
	Using the Altia Graphics for Super_Cruise Demonstration Model
	Acquiring Data with the Altia Interactive Animation Client
	Run-Time Variable Editing with the Altia Client
	Ending the Simulation

	7.3.2� Building and Running a New Model
	Creating a RealSim Project
	Creating the SystemBuild Model and an RTF File of the RealSim Top-Level SuperBlock
	Building the Interactive Animation Panel
	Simulating the Model in SystemBuild
	Simulating the Model on the RealSim Controller

	Index

