

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

Session 3220

Enhancing the DSP Toolkit of LabVIEW

Murat Tanyel
Dordt College

Abstract

Most Digital Signal Processing (DSP) courses rely heavily on MATLAB and/or C, representing
the state of the art in textual programming, for their standard computer tools. Many textbooks
are published containing examples, if not sections, devoted to these textual languages. We have
argued, in a previous paper, that whereas this environment may be efficient in manipulating
equations, textual implementation of processes best described by block diagrams loses its intuitive
substance and gave examples in LabVIEW of implementations that are better left graphical.
However, the standard DSP toolkit of LabVIEW is aimed at the practicing engineer/scientist who
needs to process acquired data to reach other ends in contrast to a student whose aim is to learn
about signal processing. LabVIEW’s DSP toolkit is rich with high level algorithms but needs to
be enhanced in order to serve the pedagogical needs of students of DSP. Having decided to teach
DSP with LabVIEW a year ago, I have found myself writing many routines to complement the
standard DSP toolkit as I have tried to demonstrate basic concepts. This paper will describe this
additional toolkit that has been growing to make LabVIEW a better teaching tool in a DSP class.

I. Introduction

When I started teaching DSP last year, I chose LabVIEW as the computer tool for hands-on
experiences and demos. The decision was against the common trend, for MATLAB has become
the de facto standard for numerical computation in signal processing1. This uncommon decision
was taken because of two major reasons: i) My previous experience with LabVIEW2-6 has been
very rewarding and I would like my students to have LabVIEW programming skills in addition to
MATLAB programming skills they acquire in their Introduction to Engineering class at the
freshman level and in Linear Systems at the sophomore level. ii) It was my contention that
“processes that [are best] describe[d in terms of] what happens to various inputs to achieve an
output, so easily depicted by block diagrams in control systems, communication systems and DSP,
are better candidates for simulation and/or realization in a graphical programming environment
than in a textual environment.”7 My personal preference, as given in (i) above was not adequate
to justify this choice, while reason (ii) could be addressed by other choices, such as MATLAB’s
SIMULINK and HP’s VEE. SIMULINK has provided an effective graphical environment and
thus ‘valuable additional simulation capability’ for control systems8. HP’s VEE is another
contender in the graphical programming realm which is also aimed at data acquisition and
instrument control9. In the end, the ready availability of LabVIEW’s full development system in

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

our electronics lab, mainly for the purpose of instrument control and data acquisition through
IEEE 488 and RS 232, as opposed to the additional investment required for the alternatives won
the day for my preference.

National Instruments’ LabVIEW (short for Laboratory Virtual Instrumentation Engineering
Workbench) is based on the concept of data flow programming and is particularly suited to test
and measurement applications10. The three important components of such applications are data
acquisition, data analysis and data visualization. LabVIEW offers an environment which covers
these vital components. Therefore, the full development version offers a number of Signal
Processing functions, grouped under the headings of Signal Generation, Time Domain,
Frequency Domain, Measurement, Windows and Filters, as displayed in Fig. 1, for the
analysis of data acquired though its Data Acquisition or Instrument Drivers functions.

Figure 1: Different Signal Processing tools provided by the full development version of
LabVIEW.

The functions depicted in Fig. 1 are meant to be used by engineers or scientists for whom the
analysis of data per se, rather than a study of how data analysis is accomplished, is the main focus.
For example, the Butterworth Filter.vi will filter an array of numbers according to the
user-provided criteria (the cut-off frequency[ies], the sampling frequency, order, filter type), and
the output will provide the filtered signal, but other features such as the coefficients and/or the
poles/zeroes of this filter that a student of DSP might be interested to find out are all transparent
to the user. Therefore, a typical DSP class, such as the one described in 7, requires many more
‘functions’ than the ones that are provided by National Instruments programmers. In the two

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

years that I have taught DSP, I have generated many additional ‘functions’ or virtual instruments
(VIs) that constitute an additional toolkit for my DSP course. This paper will introduce this
additional toolkit. Section II will give a list of all the VIs in the toolkit with brief descriptions.
Section III will provide examples using some of these VIs. Section IV will conclude with my
comments on how LabVIEW has served in DSP and on future work that can be undertaken.

II. VIs Developed and Used in Class

The VIs developed and used in class are tabulated in this section (see Table 1). The first column
contains the names under which these VIs were originally saved. The second column contains the
inputs to these VIs that the user must provide. The third column lists the outputs from the VI.
The last column describes the VI briefly. The types of the inputs and outputs are also supplied. It
should be noted that DBL stands for a double precision floating point number, CDB stands for
complex number with double precision floating point components. Since LabVIEW employs a
data driven language, called G, it does not have variable names. Instead, the data inputs and
outputs can be labeled. It is these labels that are listed here and to those accustomed to traditional
programming languages, some inputs and outputs may appear to have strange names. Almost all
the VIs developed here perform functions that are beyond the scope of the signal processing
functions of the full development system. The few that duplicate the original set have been
indicated by italicized names. These few have been duplicated for pedagogical reasons and may
have different nuances from those in LabVIEW’s set.

Name Inputs (type) Outputs (type) Function
adc.vi x (DBL)

R (DBL)
B (integer)

b (Boolean array) Converts the decimal number x to binary
(2’s complement) with the given range R
and the number of bits B.

Arb0padder.vi Input Array (DBL
array)
n (integer)

Output Array
(DBL array)

Pads the input array by n 0’s.

Averager.vi N (integer) Coeffs (DBL
array)

Generates FIR coefficients for an N-length
running averager.

Canonical.vi x[n] (DBL array)
bk (DBL array)
ak (DBL array)

y[n] (DBL array) 2nd order canonical filter

Cascade.vi x (DBL array)
A matrix (DBL 2D
array)
B matrix (DBL 2D
array)

y (DBL array) Implements cascade filtering of arbitrary
order with 2nd order canonical segments.

Coeffs to Pole
Zeroes.vi

b coeffs (DBL array)
a coeffs (DBL array)

poles (CDB array)
zeroes (CDB
array)

Computes poles & zeroes from the
numerator and denominator coefficients of
a discrete system transfer function.

Cosforex913.vi L (integer)
fo (DBL)
fs (DBL)

cos(2*pi*fo*t)
(DBL array)

Generates a cosine sequence with
frequency fo at the sampling frequency fs of
length L.

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

dac.vi b (Boolean array)

R (DBL)
dac (DBL) Converts a binary (2’s complement) number

to decimal in the given range.
Direct form.vi x[n] (DBL array)

bk (DBL array)
ak (DBL array)

y[n] (DBL
array)

2nd order direct form filter

DTFT.vi x (DBL array)
f (DBL)

X(jf) (CDB) Computes the DTFT of the sequence x at the
frequency f.

DTFT_Horner.vi x (DBL array)
f (DBL)

X(jf) (CDB) Computes the DTFT of the sequence x at the
frequency f using Hörner’s rule.

EvnOd.vi N (integer) Even/Odd
(Boolean)

Determines whether the input N is even or
not.

FIRL-HPKaiser.vi fpass (DBL)
fstop (DBL)
Apass (DBL)
Astop (DBL)
fs (DBL)
HP/LP (Boolean)

Coeffs (DBL
array)

Generates coefficients of a LP or a HP
Kaiser windowed FIR filter with the given
frequency specs.

FIRWindowedFilter.vi M (integer)
wc or wb, ×p (DBL)
wa, ×p (DBL)
LP/BP-HP/BS
(Boolean)

Coefficients
(DBL array)

Generates coefficients of a LP, HP, BP or
BS rectangular windowed FIR filter of
length 2M+1 with frequency specs (obtained
from the appropriate combination of inputs).

GenDelay.vi x[n] (DBL)
n (integer)
D (integer)
w-in (DBL array)

w-out (DBL
array)

Implements a delay of D for the incoming
signal point x[n] at index n.

Generate
Pattern.vi

Array to be
manipulated (DBL
array)
DONE (Boolean)

Array out (DBL
array)

Allows the user to generate an arbitrary
sequence and edit it until DONE button is
pressed after which the last version of the
sequence is kept.

LPFIRrect.vi M (integer)
wc/p (DBL)

Coeffs (DBL
array)

Generates coefficients of a lowpass
rectangular windowed FIR filter of length
2M+1 with cutoff frequency of wc.

MagSpect.vi x (DBL array)
dB-Linear (Boolean)
Refinement (integer)
fs (DBL)

|X| (DBL array)
xo (DBL)
df (DBL)
Magnitude
(graph)

Making use of LabVIEW’s DFT/FFT block,
computes the magnitude spectrum of the
input sequence x, outputs it in graph form
and in numeric form as an array (|X|), xo
(beginning point for the horizontal axis) and
df (interval between horizontal data points).

ModuloNReduce.vi Input Sequence (DBL
array)
N (integer)

Modulo-N
Reduced
Sequence (DBL
array)

Modulo-N reduces the input sequence.

Norm0Padder.vi Input Array (DBL
array)
n (integer)

Output –n 0s
padded (DBL
array)

Pads the input array by n 0’s and scales the
array such that the power spectrum is
preserved.

Overlap-Add.vi Filter Coeffs (DBL
Array)
Data Chunk (DBL
array)
Trailing edge of prev.
(DBL array)

Output-steady
(DBL array)
Trailer (DBL
array)

Performs each chunk of convolution for the
overlap-add method of convolution.

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

ParEq.vi fs (DBL)

f0 (DBL)
R (DBL)
r (DBL)

ak (DBL
array)
bk (DBL
array)

Generates forward and reverse coefficients of
a 2nd order parametric equalizer from the
input specs.

ParPes.vi fs (DBL)
fo (DBL)
Df (DBL)

ak (DBL
array)
bk (DBL
array)

Generates forward and reverse coefficients of
a 2nd order parametric resonator from the
input specs.

PoleZeroDiag.vi Poles (CDB array)
Zeroes (CDB array)

Pole/Zero
Diagram
(graph)

Plots the pole/zero diagram.

PoleZeroDiagDisp.vi Poles (CDB array)
Zeroes (CDB array)

<NONE> Displays the plot of the pole/zero diagram in a
separate window.

SimpleWavetable.v
i

Wavetable (DBL
array)
Delay (integer)
STOP (Boolean)

Periodic
Waveform
(graph)

Generates a periodic waveform from a
wavetable.

Wavetable3.vi Open from file
(Boolean)
Delay (integer)
of periods (integer)
fs, kHz (DBL)
f, kHz (DBL)
Method (integer)

Periodic
Waveform
(graph)

Generates a periodic waveform from a
wavetable (from an existing file or using
Generate Pattern.vi) at the frequency
specified.

xtoXthruDTFT.vi x (DBL array)
fo (DBL)
fend (DBL)
N (integer)
fs (DBL)

X(jf) (CDB
array)
xo (DBL)
Df (DBL)

Computes the spectrum of the input sequence
x using the DTFT. The frequency range is
defined by the inputs fo and fend with N
increments.

Table 1: DSP tools developed in house.

III. Examples

I will provide three examples of how I use LabVIEW in class. The first example,
IDFTdemo.vi, uses only LabVIEW’s signal processing toolkit. The second and third examples
make use of the additional toolkit developed in house and described in section II.

IDFTdemo.vi: The inverse discrete-time Fourier transform (IDFT) may be obtained from the
discrete-time Fourier (DFT) transform by the relation11

IDFT(X) =
N
1 [DFT(X*)]* (1)

where X is the discrete-time Fourier transform of the sequence x, N is the number of elements in
either sequence and * stands for complex conjugation.

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

Fig. 2 is the front panel of the VI that demonstrates Eq. 1. The user may choose from a
sinusoidal, a rectangular pulse or a ramp generator to produce the time sequence x. In this
example, a sinusoid is chosen. The parameters of the generator may be specified by the knobs “#

Figure 2: The front panel of IDFTdemo.vi that demonstrates how the IDFT may be obtained
by using the DFT.

of Cycles” and “Angle”. The captions for these knobs are dynamic, if Pulse is selected, the
captions become “Pulse Width” and “Delay” and if Ramp is selected, they are “Starting Value”
and “Ending Value”. The first graph labeled “Original, x” displays the sequence generated. The
second graph, labeled “DFT, X” displays the real and imaginary parts of the discrete Fourier
transform of the original sequence. The final graph, labeled “IDFT” displays the inverse discrete

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

Fourier transform of the sequence X obtained in two ways: the solid red line is the plot of the
sequence obtained by LabVIEW’s IDFT function and the discrete blue plot is the IDFT obtained
by employing LabVIEW’s DFT function as specified in Eq. 1. In class, I make a note of pointing
out that this demonstration in no way proves Eq. 1, but should be considered alongside the
analytical development in the textbook11 spelling out the derivation of Eq. 1.

Fig. 3 depicts the implementation of Eq. 1 in this demo. All the blocks in this diagram are
available in the full development version of LabVIEW 5.1. The “Waveform” switch chooses

Figure 3: The block diagram of IDFTdemo.vi utilizing Eq. 1.

between the three cases of the case structure (the rectangular area in the lower left). This
exposure has captured case ‘0’ which generates the sine wave. The string constants “Angle” and
“# of Cycles” (in magenta borders) determine the captions of the related knobs and change with
each case. We note that the labels for these knobs are “Angle” and “Cycles”, chosen before the

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

versatility was programmed in and hence the display of labels in the front panel is disabled to
avoid confusion. The array coming out of the case structure is connected to the graph “Original,

x” and proceeds to the DFT block of LabVIEW, whose icon spells F {
~
x }. The real and

imaginary parts of its output (X) are separated and graphed in “DFT, X”. To get back to the time
domain, the output of the DFT block (X) is connected in one path to LabVIEW’s IDFT block
(whose icon spells F-1{x}), which in turn is connected to one of the plots of the graph “IDFT”.
The other path takes X to the complex conjugate block (with the icon z*) to obtain X*. X* is
connected to another DFT block and its output is again connected to the complex conjugate
block, making up [DFT(X*)]*. The real part of this array is divided by 128 (N = 128 in this
example) and graphed together with the array from the alternate path. We note that if Eq. 1 is
applied correctly, the resulting array should have all real values and the last conversion is for the
sake of avoiding a type conflict in the graph.

Figure 4: The front panel of Ex_9_1_3.vi which compares the effect of various windowing
techniques on the spectrum of a 50 Hz sinusoid.

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

Ex_9_1_3.vi: Fig. 4 shows the front panel of a VI that demonstrates the effect of various
windows as well as the record length (L) on the estimation of the spectrum of a 50 Hz sinusoid.

This front panel depicts the result of the run with L = 50 and Kaiser window with b = 2 selected.
The front panel is otherwise self-explanatory. This VI is best run in continuous mode, selecting
different windows and changing the relevant parameters while the VI is running.

A look at the block diagram of Ex_9_1_3.vi reveals that this demo utilizes
xtoXthruDTFT.vi from our toolkit (Fig. 5). This VI (whose block has the icon with the
characters spelling “x ? X thru DTFT”) estimates the spectrum of the input array in a range of
frequencies making use of the discrete time Fourier transform.

Figure 5: The block diagram of Ex_9_1_3.vi revealing the use of xtoXthruDTFT.vi.

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

The discrete time Fourier transform at a single frequency w is given by11:

å
-

=

-=
1

0
)()(

L

n

njenxX ww (2).

XtoXthruDTFT.vi makes use of DTFT.vi, another item in the home-brewed toolkit (Fig. 6),
which implements Eq. 2. A study of Fig. 6 will reveal that XtoXthruDTFT.vi has inputs “x”
(the time sequence), “fo” (beginning frequency), “fend” (final frequency), “fs” (sampling
frequency), “N” (number of frequency points over which the spectrum is to be estimated). From
the frequency range specification and N the appropriate inputs for DTFT.vi are calculated and
this subVI is called in a for loop. The output of DTFT.vi at each frequency is accumulated in an
array making up X(jf). We note that LabVIEW’s help window is invoked, giving information on
DTFT.vi: indicating its inputs and outputs on the icon and displaying explanatory text as
entered when the VI was written.

Figure 6: The block diagram of xtoXthruDTFT.vi.

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

Figure 7: The front panel of Sinusoidal Generator Demo.vi.

Sinusoidal Generator Demo.vi: A filtering approach to generating a sinusoid would
be to design a filter whose impulse response, h(n), is the desired waveform The filter whose
transfer function is given by

221
0

1
0

cos21
sin

)(--

-

+-
=

zRzR
zR

zH
w

w
 (3)

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

generates an exponentially decaying sinusoid of frequency w0 for 0 < R <1 as its impulse
response11. For R = 1, it generates a pure sinusoid. Fig. 7 depicts the front panel of
Sinusoidal Generator.vi which demonstrates such a filter. Its inputs are R and w0 in
terms of p (in other words, in normalized frequency units). The outputs are the impulse response
of the filter and the pole-zero plot of its transfer function. Like the previous demo, this VI is best
run in continuous mode. By changing the value of R, we can observe its effect on the impulse
response and the pole/zero pattern of the filter and watch the impulse response become a pure
sinusoid when the poles are exactly on the unit circle (R = 1).

Figure 8: The block diagram of Sinusoidal Generator Demo.vi.

Fig. 8 depicts the block diagram that describes the computations for this simulation. We note that
this VI employs Canonical.vi, listed in section II of this paper and described in7. Its b
coefficients (or forward coefficients) are supplied by an Build Array block whose individual inputs

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

are 0 (a constant), Rsinw0z-1 (the reader may be convinced by following the blocks from the input
labeled “w (multiple of p)” to the second input of Build Array) and another 0 (the same constant
connected to the third input). Likewise, its a coefficients (or reverse coefficients) are supplied by
another Build Array block with two inputs. It should be noted that Cascade.vi assumes a0 =1
and therefore only two a coefficients are supplied. The other VIs from this toolkit that this demo
employs are Coeffs to Pole Zeroes.vi (the predominantly yellow block) that computes
poles and zeroes from the coefficients of a transfer function and PoleZeroDiag.vi (the
predominantly blue block to the left of “Pole/Zero Plot”) which prepares a plot of the poles and
zeroes with the unit circle.

V. Conclusions

At the end of last year’s offering of DSP we reported on the suitability of LabVIEW as a
computer tool for DSP and concluded7: “… mathematical formulae are better dealt with by
textual languages and there are some algorithms, such as the implementation of circular buffers,
that are very simple in the C language but present great difficulty in LabVIEW. Therefore, we
should not abandon the use of such languages, but use every tool in applications where [their]
strengths excel.” We noted that the instrument-like user interface of LabVIEW, its abundance of
analysis VIs make it very attractive and inviting to implement most DSP routines and
recommended that in applications where it is cumbersome to program in LabVIEW, we could
have an experienced programmer write the painstakingly difficult algorithm and make it available
as a subVI to the rest of the class so that students do not get bogged down by a few non-intuitive
programs. This paper is a report on the state of the progress that has been made to achieve this
end.

The works that remains is twofold. I plan to expand the toolkit in future offerings of the course.
An equally important task is to “polish” all the VIs in the toolkit so that they all have their unique
icons and their documentation so that LabVIEW’s help facility may display adequate information
on each of the VIs. Right now, only a limited number of these VIs benefit from such luxuries (see
Fig. 6 for an example).

The student response has been enthusiastic again this year. Part of the enthusiasm is due to the
aesthetics of LabVIEW virtual instruments. I have seen many a student revisiting and perfecting
the way the front panel looks long after his/her VI has achieved its computational goals and long
after the class period has ended. If it is going to help students enjoy DSP, I am happy to go the
extra mile and develop the additional DSP toolkit for this not-quite-standard-for-DSP
programming environment.

ACKNOWLEGEMENTS: The LabVIEW software used in this course was purchased through a
grant to upgrade our electronics lab from Johnson Controls in Holland, MI. I would like to thank

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

Johnson Controls for helping make the teaching of not only electronics but also DSP a pleasant
experience.

Bibliography

1. Ingle, V. K., Proakis, J. G. Digital Signal Processing using MATLAB , Pacific Grove, CA: Brooks/Cole (2000).

2. Tanyel, M., Quinn, R., Barge, E., "An Engineering Laboratory for Freshmen - Computer Utilization", in 1990

ASEE Annual Conference Proceedings, Toronto, June 26-29 1990.

3. Scoles, K., Tanyel, M., Onaral, B., "Computing in Electrical Engineering Education at Drexel University", in

IEEE Transactions on Education, vol. 36, no. 1, pp. 198-203, Feb. 1993.

4. Tanyel, M., Engineering Explorations with LabVIEW, Philadelphia, PA: Harcourt Brace Custom Publishers

(1994).

5. Abu Zeid, O. A., Tanyel, M., "Innovation in Teaching Mechanical Engineering Applications", in Proceedings

of 1994 Frontiers in Education Conference, pp. 82-86, Nov. 1994.

6. Tanyel, M., "Virtual Experimentation in Freshman and Sophomore Years," in Proceedings of 58th Annual

ASEE North Midwest Section Meeting , Oct. 1996.

7. Viss, M. and Tanyel, M. “From Block Diagrams to Graphical Programs in DSP,” in Proceedings of the 2001

American Society for Engineering Education Annual Conference & Exposition , Albuquerque, NM, June 24-27
2001.

8. Bishop, R. H., Modern Control Systems Analysis & Design Using MATLAB® & SIMULINK®, Menlo Park,

CA: Addison-Wesley (1997).

9. Helsel, R., Cutting Your Test Development Time with HP VEE , Englewood Cliffs: Prentice Hall (1994).

10. Chugani, M. L., Samant, A. R., Cerna, M., LabVIEW Signal Processing, Upper Saddle River, NJ: Prentice

Hall (1998).

11. Orfanidis, S. J., Introduction to Signal Processing, Upper Saddle River, NJ: Prentice Hall (1996).

MURAT TANYEL
Murat Tanyel is a professor of engineering at Dordt College. He teaches upper level electrical engineering courses.
Prior to teaching at Dordt College, Dr. Tanyel taught at Drexel University where he worked for the Enhanced
Educational Experience for Engineering Students (E4) project, setting up and teaching laboratory and hands-on
computer experiments for engineering freshmen and sophomores. For one semester, he was also a visiting
professor at the United Arab Emirates University in Al-Ain, UAE where he helped set up an innovative
introductory engineering curriculum. Dr. Tanyel received his B. S. degree in electrical engineering from Bogaziçi
University, Istanbul, Turkey in 1981, his M. S. degree in electrical engineering from Bucknell University,

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
 Copyright Ó 2002, American Society for Engineering Education

Lewisburg, PA in 1985 and his Ph. D. in biomedical engineering from Drexel University, Philadelphia, PA in
1990.

	Main Menu: Main Menu

